forked from openalpr/train-detector
-
Notifications
You must be signed in to change notification settings - Fork 0
/
crop_plates.py
executable file
·166 lines (116 loc) · 5.21 KB
/
crop_plates.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
#!/usr/bin/python
import os
import sys
import json
import math
import cv, cv2
import numpy as np
import copy
import yaml
from argparse import ArgumentParser
parser = ArgumentParser(description='OpenALPR License Plate Cropper')
parser.add_argument( "--input_dir", dest="input_dir", action="store", type=str, required=True,
help="Directory containing plate images and yaml metadata" )
parser.add_argument( "--out_dir", dest="out_dir", action="store", type=str, required=True,
help="Directory to output cropped plates" )
parser.add_argument( "--zoom_out_percent", dest="zoom_out_percent", action="store", type=float, default=1.25,
help="Percent multiplier to zoom out before cropping" )
parser.add_argument( "--plate_width", dest="plate_width", action="store", type=float, required=True,
help="Desired aspect ratio width" )
parser.add_argument( "--plate_height", dest="plate_height", action="store", type=float, required=True,
help="Desired aspect ratio height" )
options = parser.parse_args()
if not os.path.isdir(options.input_dir):
print "input_dir (%s) doesn't exist"
sys.exit(1)
if not os.path.isdir(options.out_dir):
os.makedirs(options.out_dir)
def get_box(x1, y1, x2, y2, x3, y3, x4, y4):
height1 = int(round(math.sqrt((x1-x4)*(x1-x4) + (y1-y4)*(y1-y4))))
height2 = int(round(math.sqrt((x3-x2)*(x3-x2) + (y3-y2)*(y3-y2))))
height = height1
if height2 > height:
height = height2
# add 25% to the height
height *= options.zoom_out_percent
#height += (height * .05)
#print "Height: %d - %d" % (height1, height2)
points = [(x1,y1), (x2,y2), (x3,y3), (x4,y4)]
moment = cv.Moments(points)
centerx = int(round(moment.m10/moment.m00))
centery = int(round(moment.m01/moment.m00))
training_aspect = options.plate_width / options.plate_height
width = int(round(training_aspect * height))
# top_left = ( int(centerx - (width / 2)), int(centery - (height / 2)))
# bottom_right = ( int(centerx + (width / 2)), int(centery + (height / 2)))
top_left_x = int(round(centerx - (width / 2)))
top_left_y = int(round(centery - (height / 2)))
return (top_left_x, top_left_y, width, int(round(height)))
def crop_rect(big_image, x,y,width,height):
# Crops the rectangle from the big image and returns a cropped image
# Special care is taken to avoid cropping beyond the edge of the image.
# It fills this area in with random pixels
(big_height, big_width, channels) = big_image.shape
if x >= 0 and y >= 0 and (y+height) < big_height and (x+width) < big_width:
crop_img = img[y:y+height, x:x+width]
else:
#print "Performing partial crop"
#print "x: %d y: %d width: %d height: %d" % (x,y,width,height)
#print "big_width: %d big_height: %d" % (big_width, big_height)
crop_img = np.zeros((height, width, 3), np.uint8)
cv2.randu(crop_img, (0,0,0), (255,255,255))
offset_x = 0
offset_y = 0
if x < 0:
offset_x = -1 * x
x = 0
width -= offset_x
if y < 0:
offset_y = -1 * y
y = 0
height -= offset_y
if (x+width) >= big_width:
offset_x = 0
width = big_width - x
if (y+height) >= big_height:
offset_y = 0
height = big_height - y
#print "offset_x: %d offset_y: %d, width: %d, height: %d" % (offset_x, offset_y, width, height)
original_crop = img[y:y+height-1, x:x+width-1]
(small_image_height, small_image_width, channels) = original_crop.shape
#print "Small shape: %dx%d" % (small_image_width, small_image_height)
# Draw the small image onto the large image
crop_img[offset_y:offset_y+small_image_height, offset_x:offset_x+small_image_width] = original_crop
#cv2.imshow("Test", crop_img)
return crop_img
count = 1
yaml_files = []
for in_file in os.listdir(options.input_dir):
if in_file.endswith('.yaml') or in_file.endswith('.yml'):
yaml_files.append(in_file)
yaml_files.sort()
for yaml_file in yaml_files:
print "Processing: " + yaml_file + " (" + str(count) + "/" + str(len(yaml_files)) + ")"
count += 1
yaml_path = os.path.join(options.input_dir, yaml_file)
yaml_without_ext = os.path.splitext(yaml_path)[0]
with open(yaml_path, 'r') as yf:
yaml_obj = yaml.load(yf)
image = yaml_obj['image_file']
# Skip missing images
full_image_path = os.path.join(options.input_dir, image)
if not os.path.isfile(full_image_path):
print "Could not find image file %s, skipping" % (full_image_path)
continue
plate_corners = yaml_obj['plate_corners_gt']
cc = plate_corners.strip().split()
for i in range(0, len(cc)):
cc[i] = int(cc[i])
box = get_box(cc[0], cc[1], cc[2], cc[3], cc[4], cc[5], cc[6], cc[7])
img = cv2.imread(full_image_path)
crop = crop_rect(img, box[0], box[1], box[2], box[3])
# cv2.imshow("test", crop)
# cv2.waitKey(0)
out_crop_path = os.path.join(options.out_dir, yaml_without_ext + ".jpg")
cv2.imwrite(out_crop_path, crop )
print "%d Cropped images are located in %s" % (count-1, options.out_dir)