diff --git a/docs/documentation/protocols.md b/docs/documentation/protocols.md index 56e4bcd..fab2d23 100644 --- a/docs/documentation/protocols.md +++ b/docs/documentation/protocols.md @@ -8,17 +8,25 @@ Construct three prediction models named iExtreme-T, iExtreme-P and iExtreme-S se ## 3. Evaluation metrics of models To evaluate the predictive ability of the model, the following metrics are used:accuracy (ACC), precision (Prec), Recall (Rec) and F1 Score (F1) as in Eqs. (1)-(4) + + $$ (1)~~ACC = \frac{TP+TN}{TP+TN+FP+FN} $$ $$ -(2)~~Rec = \frac{TP}{TP+FP} +(2)~~Prec = \frac{TP}{TP+FP} $$ $$ -(3)~~F1 = 2 \times \frac{Prec \times Rec}{Prec+Rec} +(3)~~Rec = \frac{TP}{TP+FN} +$$ + $$ +(4)~~F1 = 2 \times \frac{Prec \times Rec}{Prec+Rec} +$$ + + True positives (TP) represent the number of EMs (Extreme microorganisms) correctly predicted as EMs; false positives (FP) are the number of non-EMs incorrectly predicted as EMs; true negatives (TN) are the number of non-EMs correctly predicted as non-EMs; and false negatives (FN) are the number of EMs incorrectly predicted as non-EMs.