-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrpo_mpi.py
354 lines (308 loc) · 14.3 KB
/
trpo_mpi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
'''
Disclaimer: The trpo part highly rely on trpo_mpi at @openai/baselines
'''
import time
import os
from contextlib import contextmanager
from mpi4py import MPI
from collections import deque
import tensorflow as tf
import numpy as np
import baselines.common.tf_util as U
from baselines.common import explained_variance, zipsame, dataset, fmt_row
from baselines import logger
from baselines.common import colorize
from baselines.common.mpi_adam import MpiAdam
from baselines.common.cg import cg
from baselines.gail.statistics import stats
def traj_segment_generator(pi, env, reward_giver, horizon, stochastic):
# Initialize state variables
t = 0
ac = env.action_space.sample()
new = True
rew = 0.0
true_rew = 0.0
ob = env.reset()
cur_ep_ret = 0
cur_ep_len = 0
cur_ep_true_ret = 0
ep_true_rets = []
ep_rets = []
ep_lens = []
# Initialize history arrays
obs = np.array([ob for _ in range(horizon)])
true_rews = np.zeros(horizon, 'float32')
rews = np.zeros(horizon, 'float32')
vpreds = np.zeros(horizon, 'float32')
news = np.zeros(horizon, 'int32')
acs = np.array([ac for _ in range(horizon)])
prevacs = acs.copy()
while True:
prevac = ac
ac, vpred = pi.act(stochastic, ob)
# Slight weirdness here because we need value function at time T
# before returning segment [0, T-1] so we get the correct
# terminal value
if t > 0 and t % horizon == 0:
yield {"ob": obs, "rew": rews, "vpred": vpreds, "new": news,
"ac": acs, "prevac": prevacs, "nextvpred": vpred * (1 - new),
"ep_rets": ep_rets, "ep_lens": ep_lens, "ep_true_rets": ep_true_rets}
_, vpred = pi.act(stochastic, ob)
# Be careful!!! if you change the downstream algorithm to aggregate
# several of these batches, then be sure to do a deepcopy
ep_rets = []
ep_true_rets = []
ep_lens = []
i = t % horizon
obs[i] = ob
vpreds[i] = vpred
news[i] = new
acs[i] = ac
prevacs[i] = prevac
rew = reward_giver.get_reward(ob, ac)
ob, true_rew, new, _ = env.step(ac)
rews[i] = rew
true_rews[i] = true_rew
cur_ep_ret += rew
cur_ep_true_ret += true_rew
cur_ep_len += 1
if new:
ep_rets.append(cur_ep_ret)
ep_true_rets.append(cur_ep_true_ret)
ep_lens.append(cur_ep_len)
cur_ep_ret = 0
cur_ep_true_ret = 0
cur_ep_len = 0
ob = env.reset()
t += 1
def add_vtarg_and_adv(seg, gamma, lam):
new = np.append(seg["new"], 0) # last element is only used for last vtarg, but we already zeroed it if last new = 1
vpred = np.append(seg["vpred"], seg["nextvpred"])
T = len(seg["rew"])
seg["adv"] = gaelam = np.empty(T, 'float32')
rew = seg["rew"]
lastgaelam = 0
for t in reversed(range(T)):
nonterminal = 1-new[t+1]
delta = rew[t] + gamma * vpred[t+1] * nonterminal - vpred[t]
gaelam[t] = lastgaelam = delta + gamma * lam * nonterminal * lastgaelam
seg["tdlamret"] = seg["adv"] + seg["vpred"]
def learn(env, policy_func, reward_giver, expert_dataset, rank,
pretrained, pretrained_weight, *,
g_step, d_step, entcoeff, save_per_iter,
ckpt_dir, log_dir, timesteps_per_batch, task_name,
gamma, lam,
max_kl, cg_iters, cg_damping=1e-2,
vf_stepsize=3e-4, d_stepsize=3e-4, vf_iters=3,
max_timesteps=0, max_episodes=0, max_iters=0,
callback=None
):
nworkers = MPI.COMM_WORLD.Get_size()
rank = MPI.COMM_WORLD.Get_rank()
np.set_printoptions(precision=3)
# Setup losses and stuff
# ----------------------------------------
ob_space = env.observation_space
ac_space = env.action_space
pi = policy_func("pi", ob_space, ac_space, reuse=(pretrained_weight != None))
oldpi = policy_func("oldpi", ob_space, ac_space)
atarg = tf.placeholder(dtype=tf.float32, shape=[None]) # Target advantage function (if applicable)
ret = tf.placeholder(dtype=tf.float32, shape=[None]) # Empirical return
ob = U.get_placeholder_cached(name="ob")
ac = pi.pdtype.sample_placeholder([None])
kloldnew = oldpi.pd.kl(pi.pd)
ent = pi.pd.entropy()
meankl = tf.reduce_mean(kloldnew)
meanent = tf.reduce_mean(ent)
entbonus = entcoeff * meanent
vferr = tf.reduce_mean(tf.square(pi.vpred - ret))
ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac)) # advantage * pnew / pold
surrgain = tf.reduce_mean(ratio * atarg)
optimgain = surrgain + entbonus
losses = [optimgain, meankl, entbonus, surrgain, meanent]
loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"]
dist = meankl
all_var_list = pi.get_trainable_variables()
var_list = [v for v in all_var_list if v.name.startswith("pi/pol") or v.name.startswith("pi/logstd")]
vf_var_list = [v for v in all_var_list if v.name.startswith("pi/vff")]
assert len(var_list) == len(vf_var_list) + 1
d_adam = MpiAdam(reward_giver.get_trainable_variables())
vfadam = MpiAdam(vf_var_list)
get_flat = U.GetFlat(var_list)
set_from_flat = U.SetFromFlat(var_list)
klgrads = tf.gradients(dist, var_list)
flat_tangent = tf.placeholder(dtype=tf.float32, shape=[None], name="flat_tan")
shapes = [var.get_shape().as_list() for var in var_list]
start = 0
tangents = []
for shape in shapes:
sz = U.intprod(shape)
tangents.append(tf.reshape(flat_tangent[start:start+sz], shape))
start += sz
gvp = tf.add_n([tf.reduce_sum(g*tangent) for (g, tangent) in zipsame(klgrads, tangents)]) # pylint: disable=E1111
fvp = U.flatgrad(gvp, var_list)
assign_old_eq_new = U.function([], [], updates=[tf.assign(oldv, newv)
for (oldv, newv) in zipsame(oldpi.get_variables(), pi.get_variables())])
compute_losses = U.function([ob, ac, atarg], losses)
compute_lossandgrad = U.function([ob, ac, atarg], losses + [U.flatgrad(optimgain, var_list)])
compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp)
compute_vflossandgrad = U.function([ob, ret], U.flatgrad(vferr, vf_var_list))
@contextmanager
def timed(msg):
if rank == 0:
print(colorize(msg, color='magenta'))
tstart = time.time()
yield
print(colorize("done in %.3f seconds" % (time.time() - tstart), color='magenta'))
else:
yield
def allmean(x):
assert isinstance(x, np.ndarray)
out = np.empty_like(x)
MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
out /= nworkers
return out
U.initialize()
th_init = get_flat()
MPI.COMM_WORLD.Bcast(th_init, root=0)
set_from_flat(th_init)
d_adam.sync()
vfadam.sync()
if rank == 0:
print("Init param sum", th_init.sum(), flush=True)
# Prepare for rollouts
# ----------------------------------------
seg_gen = traj_segment_generator(pi, env, reward_giver, timesteps_per_batch, stochastic=True)
episodes_so_far = 0
timesteps_so_far = 0
iters_so_far = 0
tstart = time.time()
lenbuffer = deque(maxlen=40) # rolling buffer for episode lengths
rewbuffer = deque(maxlen=40) # rolling buffer for episode rewards
true_rewbuffer = deque(maxlen=40)
assert sum([max_iters > 0, max_timesteps > 0, max_episodes > 0]) == 1
g_loss_stats = stats(loss_names)
d_loss_stats = stats(reward_giver.loss_name)
ep_stats = stats(["True_rewards", "Rewards", "Episode_length"])
# if provide pretrained weight
if pretrained_weight is not None:
U.load_state(pretrained_weight, var_list=pi.get_variables())
while True:
if callback: callback(locals(), globals())
if max_timesteps and timesteps_so_far >= max_timesteps:
break
elif max_episodes and episodes_so_far >= max_episodes:
break
elif max_iters and iters_so_far >= max_iters:
break
# Save model
if rank == 0 and iters_so_far % save_per_iter == 0 and ckpt_dir is not None:
fname = os.path.join(ckpt_dir, task_name)
os.makedirs(os.path.dirname(fname), exist_ok=True)
saver = tf.train.Saver()
saver.save(tf.get_default_session(), fname)
logger.log("********** Iteration %i ************" % iters_so_far)
def fisher_vector_product(p):
return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p
# ------------------ Update G ------------------
logger.log("Optimizing Policy...")
for _ in range(g_step):
with timed("sampling"):
seg = seg_gen.__next__()
add_vtarg_and_adv(seg, gamma, lam)
# ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg["tdlamret"]
vpredbefore = seg["vpred"] # predicted value function before udpate
atarg = (atarg - atarg.mean()) / atarg.std() # standardized advantage function estimate
if hasattr(pi, "ob_rms"): pi.ob_rms.update(ob) # update running mean/std for policy
args = seg["ob"], seg["ac"], atarg
fvpargs = [arr[::5] for arr in args]
assign_old_eq_new() # set old parameter values to new parameter values
with timed("computegrad"):
*lossbefore, g = compute_lossandgrad(*args)
lossbefore = allmean(np.array(lossbefore))
g = allmean(g)
if np.allclose(g, 0):
logger.log("Got zero gradient. not updating")
else:
with timed("cg"):
stepdir = cg(fisher_vector_product, g, cg_iters=cg_iters, verbose=rank == 0)
assert np.isfinite(stepdir).all()
shs = .5*stepdir.dot(fisher_vector_product(stepdir))
lm = np.sqrt(shs / max_kl)
# logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
fullstep = stepdir / lm
expectedimprove = g.dot(fullstep)
surrbefore = lossbefore[0]
stepsize = 1.0
thbefore = get_flat()
for _ in range(10):
thnew = thbefore + fullstep * stepsize
set_from_flat(thnew)
meanlosses = surr, kl, *_ = allmean(np.array(compute_losses(*args)))
improve = surr - surrbefore
logger.log("Expected: %.3f Actual: %.3f" % (expectedimprove, improve))
if not np.isfinite(meanlosses).all():
logger.log("Got non-finite value of losses -- bad!")
elif kl > max_kl * 1.5:
logger.log("violated KL constraint. shrinking step.")
elif improve < 0:
logger.log("surrogate didn't improve. shrinking step.")
else:
logger.log("Stepsize OK!")
break
stepsize *= .5
else:
logger.log("couldn't compute a good step")
set_from_flat(thbefore)
if nworkers > 1 and iters_so_far % 20 == 0:
paramsums = MPI.COMM_WORLD.allgather((thnew.sum(), vfadam.getflat().sum())) # list of tuples
assert all(np.allclose(ps, paramsums[0]) for ps in paramsums[1:])
with timed("vf"):
for _ in range(vf_iters):
for (mbob, mbret) in dataset.iterbatches((seg["ob"], seg["tdlamret"]),
include_final_partial_batch=False, batch_size=128):
if hasattr(pi, "ob_rms"):
pi.ob_rms.update(mbob) # update running mean/std for policy
g = allmean(compute_vflossandgrad(mbob, mbret))
vfadam.update(g, vf_stepsize)
g_losses = meanlosses
for (lossname, lossval) in zip(loss_names, meanlosses):
logger.record_tabular(lossname, lossval)
logger.record_tabular("ev_tdlam_before", explained_variance(vpredbefore, tdlamret))
# ------------------ Update D ------------------
logger.log("Optimizing Discriminator...")
logger.log(fmt_row(13, reward_giver.loss_name))
ob_expert, ac_expert = expert_dataset.get_next_batch(len(ob))
batch_size = len(ob) // d_step
d_losses = [] # list of tuples, each of which gives the loss for a minibatch
for ob_batch, ac_batch in dataset.iterbatches((ob, ac),
include_final_partial_batch=False,
batch_size=batch_size):
ob_expert, ac_expert = expert_dataset.get_next_batch(len(ob_batch))
# update running mean/std for reward_giver
if hasattr(reward_giver, "obs_rms"): reward_giver.obs_rms.update(np.concatenate((ob_batch, ob_expert), 0))
*newlosses, g = reward_giver.lossandgrad(ob_batch, ac_batch, ob_expert, ac_expert)
d_adam.update(allmean(g), d_stepsize)
d_losses.append(newlosses)
logger.log(fmt_row(13, np.mean(d_losses, axis=0)))
lrlocal = (seg["ep_lens"], seg["ep_rets"], seg["ep_true_rets"]) # local values
listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal) # list of tuples
lens, rews, true_rets = map(flatten_lists, zip(*listoflrpairs))
true_rewbuffer.extend(true_rets)
lenbuffer.extend(lens)
rewbuffer.extend(rews)
logger.record_tabular("EpLenMean", np.mean(lenbuffer))
logger.record_tabular("EpRewMean", np.mean(rewbuffer))
logger.record_tabular("EpTrueRewMean", np.mean(true_rewbuffer))
logger.record_tabular("EpThisIter", len(lens))
episodes_so_far += len(lens)
timesteps_so_far += sum(lens)
iters_so_far += 1
logger.record_tabular("EpisodesSoFar", episodes_so_far)
logger.record_tabular("TimestepsSoFar", timesteps_so_far)
logger.record_tabular("TimeElapsed", time.time() - tstart)
if rank == 0:
logger.dump_tabular()
def flatten_lists(listoflists):
return [el for list_ in listoflists for el in list_]