diff --git a/CHANGELOG.md b/CHANGELOG.md index 09cfd3b849..65f07e90da 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -32,6 +32,7 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0 ### Fixed - Removed a repeated line in the documentation of vn_simona config [#658](https://github.com/ie3-institute/simona/issues/658) - Removed version number "2.0" from the logo printed to console [#642](https://github.com/ie3-institute/simona/issues/642) +- Fixed PV Model documentation [#684](https://github.com/ie3-institute/simona/issues/684), [#686](https://github.com/ie3-institute/simona/issues/686) ## [3.0.0] - 2023-08-07 diff --git a/docs/readthedocs/models/pv_model.md b/docs/readthedocs/models/pv_model.md index 1a6a632e8c..8ddb822c0b 100644 --- a/docs/readthedocs/models/pv_model.md +++ b/docs/readthedocs/models/pv_model.md @@ -254,7 +254,7 @@ $$ \end{eqnarray*} $$ -Additionally, the condition $$\theta_{g} < 90°$$ must be met (sun must not be behind the surface). +Additionally, the condition $\theta_{g} < 90°$ must be met (the sun must not be behind the surface). *with*\ **$\omega$** = hour angle\ @@ -280,7 +280,7 @@ b = (\cos(\phi) \cdot \cos(\delta)) \cdot (\sin(\omega_{2}) - \sin(\omega_{1})) $$ $$ -E_{dir,S} = E_{dir,H} \cdot \frac{a}{b} +E_{beam,S} = E_{beam,H} \cdot \frac{a}{b} $$ **Please note:** $\frac{1}{180}\pi$ is omitted from these formulas, as we are already working with data in *radians*. @@ -292,7 +292,7 @@ $$ **$\omega_1$** = hour angle $\omega$\ **$\omega_2$** = hour angle $\omega$ + 1 hour\ **$\alpha_e$** = surface azimuth angle\ -**$E_{dir,H}$** = beam radiation (horizontal surface) +**$E_{beam,H}$** = beam radiation (horizontal surface) **Reference:** @@ -307,7 +307,7 @@ The diffuse radiation is computed using the Perez model, which divides the radia A cloud index is defined by $$ -\epsilon = \frac{\frac{E_{dif,H} + E_{dir,H}}{E_{dif,H}} + 5.535 \cdot 10^{-6} \cdot \theta_{z}^3}{1 + 5.535 \cdot 10^{-6} \cdot \theta_{z}^3} +\epsilon = \frac{\frac{E_{dif,H} + E_{beam,H}}{E_{dif,H}} + 5.535 \cdot 10^{-6} \cdot \theta_{z}^3}{1 + 5.535 \cdot 10^{-6} \cdot \theta_{z}^3} $$ Calculating a brightness index @@ -403,7 +403,7 @@ $$ **$\gamma_{e}$** = slope angle of the surface\ **$I_{0}$** = Extraterrestrial Radiation\ **$m$** = air mass\ -**$E_{dir,H}$** = direct radiation (horizontal surface)\ +**$E_{beam,H}$** = beam radiation (horizontal surface)\ **$E_{dif,H}$** = diffuse radiation (horizontal surface) **References:** @@ -422,7 +422,7 @@ E_{ref,S} = E_{Ges,H} \cdot \frac{\rho}{2} \cdot (1- $$ *with*\ -**$E_{Ges,H}$** = total horizontal radiation ($E_{dir,H} + E_{dif,H})$\ +**$E_{Ges,H}$** = total horizontal radiation ($E_{beam,H} + E_{dif,H})$\ **$\gamma_e$** = slope angle of the surface\ **$\rho$** = albedo @@ -437,11 +437,11 @@ $$ Received energy is calculated as the sum of all three types of irradiation. $$ -E_{total} = E_{dir,S} + E_{dif,S} + E_{ref,S} +E_{total} = E_{beam,S} + E_{dif,S} + E_{ref,S} $$ *with*\ -**$E_{dir,S}$** = Beam radiation\ +**$E_{beam,S}$** = Beam radiation\ **$E_{dif,S}$** = Diffuse radiation\ **$E_{ref,S}$** = Reflected radiation