forked from KevinMathewT/Chatbot-Tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathChatbot.py
214 lines (190 loc) · 8.5 KB
/
Chatbot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import tensorflow as tf
import numpy as np
import pickle
import re
question_length = 10
answer_length = 12
thought_vector_size = 512
embedding_size = 100
num_sampled = 512
learning_rate = 2e-3
batch_size = 64
steps = 5000
num_epochs_done = 25000
with open('data.pickle', 'rb') as data_file:
tokenized_questions, tokenized_answers, question_vocab, answer_vocab, \
question_w2id, question_id2w, answer_w2id, answer_id2w = pickle.load(data_file)
print(tokenized_questions[0])
print(tokenized_answers[0])
print(question_vocab[0])
print(answer_vocab[0])
question_vocab_size = len(question_vocab) + 2
answer_vocab_size = len(answer_vocab) + 4
print(len(tokenized_questions))
print(len(tokenized_answers))
print(question_vocab_size)
print(answer_vocab_size)
encoder_inputs = [tf.placeholder(dtype=tf.int32, shape=[None],
name='encoder_{}'.format(iterator))
for iterator in range(question_length)]
decoder_inputs = [tf.placeholder(dtype=tf.int32, shape=[None],
name='decoder_{}'.format(iterator))
for iterator in range(answer_length)]
decoder_targets = [decoder_inputs[iterator + 1] for iterator in range(answer_length - 1)]
decoder_targets.append(tf.placeholder(dtype=tf.int32, shape=[None], name='end_of_sentence'))
decoder_targets_weights = [tf.placeholder(dtype=tf.float32, shape=[None], name='target_weights_{}'.format(iterator))
for iterator in range(answer_length)]
sampled_loss_weights = tf.get_variable(name='projection_weight', shape=[answer_vocab_size, thought_vector_size],
dtype=tf.float32)
bias = tf.get_variable(name='projection_bias', shape=[answer_vocab_size],
dtype=tf.float32)
weights = tf.transpose(sampled_loss_weights)
decoder_projection = (weights, bias)
outputs, states = tf.contrib.legacy_seq2seq.embedding_attention_seq2seq(
encoder_inputs=encoder_inputs,
decoder_inputs=decoder_inputs,
cell=tf.contrib.rnn.BasicLSTMCell(thought_vector_size),
num_encoder_symbols=question_vocab_size,
num_decoder_symbols=answer_vocab_size,
embedding_size=embedding_size,
output_projection=decoder_projection,
feed_previous=False,
dtype=tf.float32
)
def sampled_smax_loss(labels, logits):
return tf.nn.sampled_softmax_loss(
weights=sampled_loss_weights,
biases=bias,
labels=tf.reshape(labels, [-1, 1]),
inputs=logits,
num_sampled=num_sampled,
num_classes=answer_vocab_size,
name='sampled_softmax_loss'
)
loss = tf.contrib.legacy_seq2seq.sequence_loss(
logits=outputs,
targets=decoder_targets,
weights=decoder_targets_weights,
softmax_loss_function=sampled_smax_loss,
name='chatbot_sequence_loss'
)
def padding(questions_param, answers_param):
for iterator in range(min(len(questions_param), len(answers_param))):
questions_param[iterator] = questions_param[iterator] \
+ (question_length - len(questions_param[iterator])) * [question_w2id['<PAD>']]
answers_param[iterator] = [answer_w2id['<START>']] \
+ answers_param[iterator] \
+ [answer_w2id['<EOS>']] \
+ (question_length - len(answers_param[iterator])) * [answer_w2id['<PAD>']]
return questions_param, answers_param
def feed_dict(questions_param, answers_param, batch=batch_size):
dictionary_param = {}
random = np.random.choice(min(len(questions_param), len(answers_param)), size=batch, replace=False)
for iterator in range(question_length):
dictionary_param[encoder_inputs[iterator].name] = np.array([questions_param[jiterator][iterator]
for jiterator in random],
dtype=np.int32)
for iterator in range(answer_length):
dictionary_param[decoder_inputs[iterator].name] = np.array([answers_param[jiterator][iterator]
for jiterator in random],
dtype=np.int32)
dictionary_param[decoder_targets[len(decoder_targets) - 1].name] = np.full(shape=[batch],
fill_value=answer_w2id['<PAD>'],
dtype=np.int32)
for iterator in range(answer_length-1):
decoder_weights = np.ones(shape=batch, dtype=np.float32)
temp = dictionary_param[decoder_inputs[iterator + 1].name]
for jiterator in range(batch):
if temp[jiterator] == answer_w2id['<PAD>']:
decoder_weights[jiterator] = 0.0
dictionary_param[decoder_targets_weights[iterator].name] = decoder_weights
dictionary_param[decoder_targets_weights[answer_length - 1].name] = np.zeros(shape=batch, dtype=np.float32)
return dictionary_param
def cleaner(x):
x = x.lower()
x = x.replace("aren't", "are not")
x = x.replace("can't", "cannot")
x = x.replace("couldn't", "could not")
x = x.replace("didn't", "did not")
x = x.replace("doesn't", "does not")
x = x.replace("don't", "do not")
x = x.replace("hadn't", "had not")
x = x.replace("hasn't", "has not")
x = x.replace("haven't", "have not")
x = x.replace("he'd", "he had")
x = x.replace("he'll", "he will")
x = x.replace("he's", "he is")
x = x.replace("I'd", "I had")
x = x.replace("I'll", "I will")
x = x.replace("I'm", "I am")
x = x.replace("I've", "I have")
x = x.replace("isn't", "is not")
x = x.replace("let's", "let us")
x = x.replace("mightn't", "might not")
x = x.replace("mustn't", "must not")
x = x.replace("shan't", "shall not")
x = x.replace("she'd", "she had")
x = x.replace("she'll", "she will")
x = x.replace("she's", "she is")
x = x.replace("shouldn't", "should not")
x = x.replace("that's", "that is")
x = x.replace("there's", "there is")
x = x.replace("they'd", "they had")
x = x.replace("they'll", "they will")
x = x.replace("they're", "they are")
x = x.replace("they've", "they have")
x = x.replace("we'd", "we had")
x = x.replace("we're", "we are")
x = x.replace("we've", "we have")
x = x.replace("weren't", "were not")
x = x.replace("what'll", "what will")
x = x.replace("what're", "what are")
x = x.replace("what's", "what is")
x = x.replace("what've", "what have")
x = x.replace("where's", "where is")
x = x.replace("who's", "who had")
x = x.replace("who'll", "who will")
x = x.replace("who're", "who are")
x = x.replace("who's", "who is")
x = x.replace("who've", "who have")
x = x.replace("won't", "will not")
x = x.replace("wouldn't", "would not")
x = x.replace("you'd", "you had")
x = x.replace("you'll", "you will")
x = x.replace("you're", "you are")
x = x.replace("you've", "you have")
x = x.replace("'d", " would")
x = x.replace("'ll", " will")
x = x.replace("'re", " are")
x = x.replace("'ve", " have")
x = x.replace("'bout", "about")
x = x.replace("'til", "until")
x = re.sub(r"[-()\"#/@;:<>{}`+=~|.!?,]", "", x)
x = x.replace(" ", " ")
return x
def getAnswer(answer_param):
answer_words_param = []
for iterator in range(answer_length):
smax = tf.nn.softmax(answer_param[iterator])
index = np.argmax(smax)
answer_words_param.append([index])
return answer_words_param
outputs_projection = [tf.matmul(outputs[i], decoder_projection[0]) + decoder_projection[1]
for i in range(answer_length)]
optimizer = tf.train.RMSPropOptimizer(learning_rate=learning_rate).minimize(loss)
init = tf.global_variables_initializer()
questions, answers = padding(tokenized_questions, tokenized_answers)
saver = tf.train.Saver()
path = tf.train.latest_checkpoint('checkpoints')
with tf.Session() as sess:
saver.restore(sess, path)
# sess.run(init)
for step in range(steps + 1):
dictionary = feed_dict(questions, answers)
sess.run(optimizer, feed_dict=dictionary)
loss_value = sess.run(loss, feed_dict=dictionary)
if step % 5 == 0:
print("Step :", step + num_epochs_done, ", Loss :", loss_value)
if step % 500 == 0 and step != 0:
saver.save(sess, 'checkpoints/', global_step=step + num_epochs_done)
print("Checkpoint saved")