-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelpers.py
48 lines (38 loc) · 1.5 KB
/
helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import pandas as pd
import numpy as np
import torch
from nets import HandNet
def scale_single_coord(coordinates):
# Read the CSV file with header
x_coords = coordinates[::3]
y_coords = coordinates[1::3]
z_coords = coordinates[2::3]
# Scale x-coordinates between 0 and 1 based on the sample-specific max and min
x_min = x_coords.min()
x_max = x_coords.max()
scaled_x_coords = (x_coords - x_min) / (x_max - x_min)
# Scale y-coordinates between 0 and 1 based on the sample-specific max and min
y_min = y_coords.min()
y_max = y_coords.max()
scaled_y_coords = (y_coords - y_min) / (y_max - y_min)
# Scale z-coordinates between 0 and 1 based on the sample-specific max and min
z_min = z_coords.min()
z_max = z_coords.max()
scaled_z_coords = (z_coords - z_min) / (z_max - z_min)
new_row = np.empty(63)
new_row[::3] = scaled_x_coords
new_row[1::3] = scaled_y_coords
new_row[2::3] = scaled_z_coords
return new_row
def predict(model, scaled_coords: list) -> str:
scaled_coords = np.array(scaled_coords)
# scaled_coords = scale_single_coord(scaled_coords)
output = model(torch.tensor(scaled_coords, dtype=torch.float32))
labels = ['peace sign', 'euro footballer', 'thumbs up', 'kpop heart', 'what the sigma']
print(output)
if output[4] > 0.5:
return 'what the sigma'
if torch.max(output) > 2:
return labels[torch.argmax(output)]
else:
return None