-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
59 lines (54 loc) · 1.74 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import argparse
from metarag import MetaRAG
parser = argparse.ArgumentParser()
parser.add_argument("--llm_name",
type = str,
default = "gpt-3.5-turbo",
choices = ["gpt-3.5-turbo", "llama2", "vacuna", "chatglm"]
)
parser.add_argument("--dataset_name",
type = str,
default = "2wiki",
choices = ['2wiki', 'hotpotqa', 'bamboogle', 'musique']
)
parser.add_argument("--save_dir",
type = str,
default = "./output"
)
parser.add_argument("--max_iter",
type = int,
default = 3
)
parser.add_argument("--ref_num",
type = int,
default = 5
)
parser.add_argument("--threshold",
type = float,
default = 0.3
)
parser.add_argument("--expert_model",
type = str,
default = "t5",
choices=['span-bert', 't5', 'llama2', 'chatglm2']
)
parser.add_argument("--do_eval",
action = "store_true"
)
parser.add_argument("--use_sample_num",
type=int,
default=50)
if __name__ == "__main__":
args = parser.parse_args()
env = MetaRAG(
llm_name = args.llm_name,
dataset_name = args.dataset_name,
save_dir = args.save_dir,
max_iter = args.max_iter,
ref_num = args.ref_num,
threshold = args.threshold,
expert_model = args.expert_model,
do_eval = args.do_eval,
use_sample_num = args.use_sample_num
)
env.run()