-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathneuralNet.py
57 lines (46 loc) · 1.64 KB
/
neuralNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import gameAI
import tensorflow as tf
import math
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(256, input_shape=[8]))
model.add(tf.keras.layers.Dense(512, input_shape=[256]))
model.add(tf.keras.layers.Dense(256, input_shape=[512]))
model.add(tf.keras.layers.Dense(2, input_shape=[256]))
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
class AI:
def __init__(self):
self.previous_data = None
self.training_data = [[], [], []]
self.last_data_object = None
self.turn = 0
self.grab_data = True
def save_data(self, bird, pipe):
if not self.grab_data:
return
if not self.previous_data:
data = [bird.y, pipe.x, pipe.top, pipe.bottom]
self.previous_data = data
data_xs = [bird.y, pipe.x, pipe.top, pipe.bottom]
if bird.x < self.previous_data[0]:
index = 0
elif bird.x == self.previous_data[0]:
index = 1
else:
index = 2
self.last_data_object = [*self.previous_data, *data_xs]
self.training_data[index].append(self.last_data_object)
self.previous_data = data_xs
def train(self):
lenlist = [len(self.training_data[0]), len(self.training_data[1]), len(self.training_data[2])]
length = min(lenlist)
if not length:
print("nothing to train")
return
data_xs = []
data_xy = []
for i in range(3):
data_xs.append(slice(*self.training_data[i][:length]))
if i == 0:
data_xy.append()