-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_algorithmic.py
367 lines (319 loc) · 12.3 KB
/
train_algorithmic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
"""Train UT on Algorithmic Tasks"""
import os
from pathlib import Path
from itertools import cycle
from functools import partial
from tqdm import trange
import wandb
import torch
import torch.nn as nn
import utils
# from loguru import logger
import numpy as np
from argparse import ArgumentParser
from algorithmic_generators import generators
from model import UniversalTransformer
DEVICE = "cpu"#1
print(f"Using device: {DEVICE}")
def calc_seq_acc(outputs, targets, tgt_padding_mask):
"""Calculate accuracy for a batch"""
if outputs.shape[-1] == 1:
outputs = np.round(outputs.detach().numpy())
else:
outputs = np.argmax(outputs.cpu().detach().numpy(), axis=-1)
targets = targets.detach().numpy()
tgt_padding_mask = tgt_padding_mask.detach().numpy()
tp = np.all((outputs == targets) | tgt_padding_mask, axis=-1).sum()
return tp / len(outputs)
def calc_char_acc(outputs, targets, tgt_padding_mask):
"""Calculate accuracy for a batch"""
if outputs.shape[-1] == 1:
outputs = np.round(outputs.detach().numpy())
else:
outputs = np.argmax(outputs.cpu().detach().numpy(), axis=-1)
valid_pos = ~tgt_padding_mask.detach().numpy()
targets = targets.detach().numpy()
outputs = outputs[valid_pos]
targets = targets[valid_pos]
tp = (outputs == targets).sum()
return tp / len(outputs)
def batch_loss_step(model, batch, loss_fn, device, pad_val):
"""Compute loss for a batch"""
source, target, src_pad_mask, tgt_pad_mask = batch
shifted_target, shifted_tgt_pad_mask = utils.prepare_target(target, tgt_pad_mask, pad_val)
source = source.to(device)
target = target.to(device)
shifted_target = shifted_target.to(device)
src_pad_mask = src_pad_mask.to(device)
tgt_pad_mask = tgt_pad_mask.to(device)
shifted_tgt_pad_mask = shifted_tgt_pad_mask.to(device)
out, ponder_time = model(
source,
shifted_target,
source_padding_mask=src_pad_mask,
target_padding_mask=shifted_tgt_pad_mask,
)
loss_value = loss_fn(out[~tgt_pad_mask].view(-1, model.target_vocab_size), target[~tgt_pad_mask].view(-1))
return out, loss_value, ponder_time
def batch_loss_step_val(model, batch, loss_fn, device):
"""Compute loss for a batch"""
source, target, src_pad_mask, tgt_pad_mask = batch
source = source.to(device)
src_pad_mask = src_pad_mask.to(device)
target = target.to(device)
out, ponder_time = model.generate_algorithmic(
source, src_pad_mask
)
loss_value = loss_fn(out.flatten(0, 1)[~tgt_pad_mask.flatten(0, 1)], target[~tgt_pad_mask].view(-1))
return out, loss_value, ponder_time
def train_for_a_step(model, length, batch_size, data_generator, step, tr_log_interval, pad_val):
batch = data_generator.get_batch(length, batch_size)
model.train()
optimizer.zero_grad()
out, tr_loss, ponder_time = batch_loss_step(model, batch, loss, DEVICE, pad_val)
tr_loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
lr = scheduler.step()
targets = batch[1]
tgt_padding_maks = batch[3]
seq_acc = calc_seq_acc(out, targets, tgt_padding_maks)
char_acc = calc_char_acc(out, targets, tgt_padding_maks)
max_ponder_time = float(torch.max(ponder_time))
avg_ponder_time = float(torch.mean(ponder_time))
if step % tr_log_interval == 0:
wandb.log({"tr": {"loss": tr_loss.item(), "seq acc": seq_acc, 'char acc': char_acc,
'max ponder time': max_ponder_time, 'avg ponder time': avg_ponder_time}, "lr": lr}, step=step)
def infer_for_a_step(model, batch):
model.eval()
with torch.no_grad():
out, eval_loss, ponder_time = batch_loss_step_val(model, batch, loss, DEVICE)
return out, eval_loss, ponder_time
def run_evaluation(model, l, batch_size, data_generator, val_steps, step=0):
"""Evaluate model on test data of length l"""
seq_accuracy = []
char_accuracy = []
max_ponder_time = []
avg_ponder_time = []
for step in range(val_steps):
batch = data_generator.get_batch(l, batch_size)
out, eval_loss, ponder_time = infer_for_a_step(model, batch)
targets = batch[1]
tgt_padding_maks = batch[3]
seq_acc = calc_seq_acc(out, targets, tgt_padding_maks)
char_acc = calc_char_acc(out, targets, tgt_padding_maks)
seq_accuracy.append(seq_acc)
char_accuracy.append(char_acc)
max_ponder_time.append(float(torch.max(ponder_time)))
avg_ponder_time.append(float(torch.mean(ponder_time)))
wandb.log({"val": {"seq acc": np.mean(seq_accuracy), "char acc": np.mean(char_acc),
'max ponder time': np.mean(max_ponder_time), 'avg ponder time': np.mean(avg_ponder_time)}})
return seq_accuracy, char_accuracy
def run_final_test(model, test_lengths, batch_size, data_generator, steps):
"""Test final trained model on test data of different length l"""
res_dict = create_res_dict(test_lengths)
seq_accuracy = []
char_accuracy = []
max_ponder_time = []
avg_ponder_time = []
for l in test_lengths:
for step in range(steps):
batch = data_generator.get_batch(l, batch_size, rand_length= False)
out, eval_loss, ponder_time = infer_for_a_step(model, batch)
targets = batch[1]
tgt_padding_maks = batch[3]
seq_acc = calc_seq_acc(out, targets, tgt_padding_maks)
char_acc = calc_char_acc(out, targets, tgt_padding_maks)
seq_accuracy.append(seq_acc)
char_accuracy.append(char_acc)
max_ponder_time.append(float(torch.max(ponder_time)))
avg_ponder_time.append(float(torch.mean(ponder_time)))
res_dict[l]["seq acc"] = np.mean(seq_accuracy)
res_dict[l]["char acc"] = np.mean(char_accuracy)
res_dict[l]["max ponder time"] = np.mean(max_ponder_time)
res_dict[l]["avg ponder time"] = np.mean(avg_ponder_time)
return res_dict
def create_res_dict(test_lengths):
res_dict = dict()
for l in test_lengths:
l_dict = {"seq acc": 0, "char acc": 0, "max ponder time": 0, "avg ponder time": 0}
res_dict[l] = l_dict
return res_dict
def train_loop(
model,
train_length,
val_length,
data_generator,
batch_size,
train_steps,
val_steps,
tr_log_interval,
val_interval,
pad_val,
save_path=Path('None'),
):
# Main training loop.
for step in trange(train_steps):
train_for_a_step(model, train_length, batch_size, data_generator, step, tr_log_interval, pad_val)
# Run evaluation.
if step > 0 and step % val_interval == 0:
seq_accuracy, char_accuracy = run_evaluation(model, val_length, batch_size, data_generator, val_steps, step)
if save_path.name != 'None':
torch.save(model.state_dict(), save_path/f'{step}')
if __name__ == "__main__":
# Parse arguments
parser = ArgumentParser()
parser.add_argument(
"--batch_size",
type=int,
default=4,
help="Batch size",
)
parser.add_argument(
"--d_model",
type=int,
default=512,
help="Model dimension",
)
parser.add_argument(
"--d_feedforward",
type=int,
default=2048,
help="Feedforward dimension",
)
parser.add_argument(
"--n_heads",
type=int,
default=8,
help="Number of attention heads",
)
parser.add_argument(
"--max_seq_len",
type=int,
default=401,
help="Maximum sequence length",
)
parser.add_argument(
"--max_time_step",
type=int,
default=10,
help="Maximum time step",
)
parser.add_argument("--train_steps", type=int, default=20, help="Number of training steps")
parser.add_argument("--val_steps", type=int, default=2, help="Number of validation steps")
parser.add_argument("--test_steps", type=int, default=2,
help="Number of test steps")
parser.add_argument("--val_interval", type=int, default=100, help="Run validation (& log) every N steps")
parser.add_argument(
"--halting_thresh",
type=float,
default=0.8,
help="Halting threshold",
)
parser.add_argument(
"--label_smoothing",
type=float,
default=0.1,
help="Label smoothing",
)
parser.add_argument("--tr_log_interval", type=int, default=1, help="Log training loss every N steps")
parser.add_argument("--train_length", type=int, default=40, help="Length of input sequence for training")
parser.add_argument("--val_length", type=int, default=40, help="Length of input sequence for validation")
parser.add_argument(
"--source_vocab_size",
type=int,
default=1, # for algorithmic tasks just one integer as input
help="Vocab size of input",
)
parser.add_argument("--nclass", type=int, default=33, help="Number of classes (0 is padding)")
parser.add_argument("--pad_val", type=int, default=0, help="Value used for padding")
parser.add_argument(
"--task",
type=str,
default="badd",#, scopy, rev",
help="List of algorithmic tasks to be processed", # rev: reverse input sequence, scopy: copy input sequence, badd: integer addition
)
parser.add_argument(
"--test_seq_length",
type=str,
default="400",
help="List of sequence lenghts to be tested on final model",
)
parser.add_argument(
"--save_weights",
type=str,
default="None",
help="path where to save weights to",
)
parser.add_argument(
"--model_weights",
type=str,
default="None",
help="path to pretrained model weights",
)
args = parser.parse_args()
train_length = args.train_length
val_length = args.val_length
batch_size = args.batch_size
pad_val = args.pad_val
train_steps = args.train_steps
val_steps = args.val_steps
test_steps = args.test_steps
val_interval = args.val_interval
tr_log_interval = args.tr_log_interval
task_list = args.task.replace(" ", "").split(",")
test_seq_lengths = [int(x) for x in args.test_seq_length.replace(" ", "").split(",")]
model_weights = Path(args.model_weights)
root_save_path = Path(args.save_weights)
result_dict = {}
# Iterate over tasks
for task in task_list:
# Initialize Generator
data_generator = generators[task]
# Initialize model
model = UniversalTransformer(
source_vocab_size=args.source_vocab_size,
target_vocab_size=args.nclass + 1,
d_model=args.d_model,
n_heads=args.n_heads,
d_feedforward=args.d_feedforward,
max_seq_len=args.max_seq_len,
max_time_step=args.max_time_step,
halting_thresh=args.halting_thresh,
target_input_size=1,
embedding_method="linear",
).to(DEVICE)
if model_weights.name != 'None':
model.load_state_dict(torch.load(model_weights, map_location='cuda'))
# Training extras
loss = torch.nn.CrossEntropyLoss(label_smoothing=args.label_smoothing).to(DEVICE)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-5)
scheduler = utils.CustomLRScheduler(optimizer, d_model=args.d_model, warmup_steps=4000, lr_mul=0.25)
# Initialize W&B
wandb.init(project="universal_transformer_algorithmic_task", group=f"{task}", config=args)
wandb.watch(model, log_freq=1)
if root_save_path.name != 'None':
save_path = root_save_path / f'{wandb.run.id}'
save_path.mkdir(parents=True, exist_ok=True)
else:
save_path = root_save_path
# logger.info("Using args: {")
# for k, v in wandb.config.items():
# logger.info(f" {k}: {v}")
# logger.info("}\n")
# start training loop
train_loop(
model,
train_length,
val_length,
data_generator,
batch_size,
train_steps,
val_steps,
tr_log_interval,
val_interval,
pad_val,
save_path
)
results = run_final_test(model, test_seq_lengths, batch_size, data_generator, test_steps)
result_dict[task] = results