These set of instructions are for running the trained models.
Install all required dependencies by running (does not include tensorflow, opencv3):
pip install -r requirements.txt
Place subjects as seperate folders under media/train_image_classifier
.
There needs to be a minimum of two subjects.
Download the following models from here:
-
SSDLite mobilenet: Place under detection/model/ssdlite_v2.pb [This can be customised].
-
Facenet Mobilenet: Place the frozen_inference.pb under detection/model/mobilenet_v2.pb [This can be customised].
-
Facenet Inception_ Resnet_v1: Place the frozen_inference.pb under detection/model/inception_resnet_v1.pb [This can be customised].
Run
python train_face_classify.py
(mobilenet)
python train_face_classify.py --recognition_model inception_resnet_v1
For non-standard flags, run as:
python train_face_classify.py [-h]
[--recognition_model {inception_resnet_v1,mobilenet_v2,inception_resnet_v2}]
[--detection_model {ssdlite_v2,ssd_mobilenet}]
[--trained_classifier TRAINED_CLASSIFIER]
[--classifier {SVM,KNN}]
[--embedding_size {128,512}]
optional arguments:
-h, --help show this help message and exit
--recognition_model {inception_resnet_v1,mobilenet_v2,inception_resnet_v2}
--detection_model {ssdlite_v2,ssd_mobilenet}
detection model to use
--trained_classifier TRAINED_CLASSIFIER
trained classifier to use
--classifier {SVM,KNN}
trained classifier to use
--embedding_size {128,512}
Embedding Size
Run
python demo_face_recognition.py (mobilenet)
python train_face_classify.py --recognition_model inception_resnet_v1
(inception_resnet)