Skip to content

Latest commit

 

History

History
22 lines (16 loc) · 786 Bytes

README.md

File metadata and controls

22 lines (16 loc) · 786 Bytes

TF-VAE-GAN-DRAW

TensorFlow implementation of Deep Convolutional Generative Adversarial Networks, Variational Autoencoder (also Deep and Convolutional) and DRAW: A Recurrent Neural Network For Image Generation.

Run

VAE/GAN:

python main.py --working_directory /tmp/gan --model vae

DRAW:

python main-draw.py --working_directory /tmp/gan

Deep Convolutional Generative Adversarial Networks produce decent results after 10 epochs using default parameters.

###TODO:

  • More complex data.
  • Add Adversarial Autoencoder
  • Replace current attention mechanism with Spatial Transformer Layer