-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetrics.py
executable file
·290 lines (249 loc) · 12.2 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Mar 1 21:40:07 2021
@author: melike
"""
import torch
from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error, cohen_kappa_score, f1_score, accuracy_score
import numpy as np
import collections
import constants as C
class Metrics:
"""
Measures regression and classification metrics.
Args:
num_folds (int): Number of folds. Can be None for training without
cross-validation or an int >0 for training with cross-validation.
"""
def __init__(self, num_folds, device, pred_type, set_name, num_classes=None):
self.num_folds = num_folds
self.device = device
self.pred_type = pred_type
self.set_name = set_name
self.test_score_names = self._init_test_score_names()
self.test_scores = self._init_test_scores()
self.num_classes = num_classes
if self.pred_type in ['reg+class', 'class']: # Init confusion matrix for test set
self.conf_mat = self._init_conf_matrix()
def _init_test_score_names(self):
if self.pred_type == 'reg':
return ['r2', 'r', 'rmse', 'mae']
elif self.pred_type == 'class':
return ['kappa']
elif self.pred_type == 'reg+class':
return ['kappa', 'r2', 'r', 'rmse', 'mae']
"""
Inits confusion matrix of all models for all folds. This one is
num_classes x num_classes instead of keeping TP, TN, FP, FN of each class
because reviewers requested for this in the revision.
"""
def _init_conf_matrix(self):
return {c: torch.zeros(self.num_classes, self.num_classes, dtype=torch.long) for c in range(self.num_folds)}
"""
Updates given fold's confusion matrix with given values.
"""
def update_conf_matrix(self, preds, targets, fold):
preds = torch.argmax(preds, 1)
for t, p in zip(targets.view(-1), preds.view(-1)):
self.conf_mat[fold][t.long(), p.long()] += 1
"""
Create score dict to keep test scores of all folds.
"""
def _init_test_scores(self):
scores = {}
for score_name in self.test_score_names:
scores[score_name] = {'model_last_epoch.pth': [], # Last epoch model
'best_{}_loss.pth'.format(self.set_name): [], # Best validation loss model
'best_{}_score.pth'.format(self.set_name): [], # Best validation score model
'model_early_stopping.pth': []} # Early stopping model
return scores
"""
Returns normalizes confusion matrix
"""
def get_normed_conf_mat(self):
return {k: torch.nan_to_num(v / v.sum(1).view(-1, 1).expand(v.shape), nan=0.0, posinf=0.0, neginf=0.0) for k, v in self.conf_mat.items()}
# torch.nan_to_num(x, nan=0.0, posinf=0.0, neginf=0.0)
"""
Adds one fold score to test scores.
"""
def add_fold_score(self, fold_score, model_name):
for score_name in self.test_score_names:
s = np.nanmean(fold_score[0][score_name]) # Has result of each batch, so take mean of it. Kappa may return NaN, so nanmean is used.
self.test_scores[score_name][model_name].append(s)
"""
Returns dict of mean and std for each model and score.
"""
def get_mean_std_test_results(self):
result = collections.defaultdict(lambda : collections.defaultdict(dict))
for score_name in self.test_score_names:
for model_name, all_fold_scores in self.test_scores[score_name].items():
if all_fold_scores: # Check list is empty.
result[score_name][model_name]['mean'] = np.mean(all_fold_scores)
result[score_name][model_name]['std'] = np.std(all_fold_scores)
else:
result[score_name][model_name]['mean'] = float('NaN') # Leave them empty in the report.
result[score_name][model_name]['std'] = float('NaN')
return result
"""
RMSE implementation with PyTorch.
"""
def __root_mean_squared_error(self, y_true, y_pred):
return torch.sqrt(torch.mean(torch.pow(y_true - y_pred, 2.0)))
"""
R2 score implementation with PyTorch.
From https://en.wikipedia.org/wiki/Coefficient_of_determination
"""
def __r2_score(self, y_true, y_pred):
y_true_mean = torch.mean(y_true)
ss_tot = torch.sum((y_true - y_true_mean) ** 2)
ss_res = torch.sum((y_true - y_pred) ** 2)
r2 = 1 - ss_res / ss_tot
return r2
"""
R score
"""
def __r_score(self, y_true, y_pred):
r2 = self.__r2_score(y_true=y_true, y_pred=y_pred)
r = torch.sqrt(r2) if r2 > 0 else -torch.sqrt(-r2)
return r
"""
MAE implementation with PyTorch.
"""
def __mean_absolute_error(self, y_true, y_pred):
mae = torch.nn.L1Loss()
return mae(y_pred, y_true)
"""
Calculates confusion matrix.
"""
def __calc_conf_matrix(self, preds, labels):
conf_matrix = { i : {'TP' : 0, 'FP' : 0, 'FN' : 0, 'TN' : 0 } for i in range(self.num_classes)}
total_size = preds.nelement()
for i in range(self.num_classes):
TP = torch.sum((preds == i) * (labels == i)).item()
FP = torch.sum((preds == i)).item() - TP
FN = torch.sum((labels == i)).item() - TP
TN = total_size - TP - FP - FN
conf_matrix[i]['TP'] += TP
conf_matrix[i]['FP'] += FP
conf_matrix[i]['FN'] += FN
conf_matrix[i]['TN'] += TN
total_same = torch.sum(preds == labels).item()
return conf_matrix, total_same
"""
Calculates classification metrics with confusion matrix.
"""
def calc_class_metrics(self, preds, labels):
conf_matrix, total_same = self.__calc_conf_matrix(preds=preds, labels=labels)
kappa_sum, acc_sum, precision_sum, recall_sum, f1_sum = 0, 0, 0, 0, 0
scores_per_class = {}
for k, v in conf_matrix.items():
total = v['TP'] + v['FP'] + v['FN'] + v['TN']
assert total > 0, "Total of samples is 0 for class {}!".format(k)
""" ================ Accuracy ================ """
acc = (v['TP'] + v['TN']) / total
acc_sum += acc
""" ================ Precision =============== """
precision = 0 if v['TP'] + v['FP'] == 0 else v['TP'] / (v['TP'] + v['FP'])
precision_sum += precision
""" ================== Recall ================ """
recall = 0 if (v['TP'] + v['FN']) == 0 else v['TP'] / (v['TP'] + v['FN'])
recall_sum += recall
""" ==================== F1 ================== """
f1 = 0 if (precision + recall) == 0 else 2 * (precision * recall) / (precision + recall)
f1_sum += f1
""" ================== Kappa ================= """
p_obs = (v['TP'] + v['TN']) / total
p_yes = ((v['TP'] + v['FP']) / total) * ((v['TP'] + v['FN']) / total)
p_no = ((v['FN'] + v['TN']) / total) * ((v['FP'] + v['TN']) / total)
p_est = p_yes + p_no
kappa = -1.0 if p_est == 1.0 else (p_obs - p_est) / (1 - p_est)
kappa_sum += kappa
scores_per_class[k] = {'precision' : precision, 'recall' : recall, 'f1' : f1, 'kappa' : kappa}
scikit_acc = np.round(total_same / total, decimals=4)
scores = np.array([precision_sum, recall_sum, f1_sum, kappa_sum])
p_ov, r_ov, f_ov, k_ov = np.round(scores / self.num_classes, decimals=4)
scores_overall = {'accuracy' : scikit_acc, 'precision' : p_ov, 'recall' : r_ov, 'f1' : f_ov, 'kappa' : k_ov }
return scores_overall, scores_per_class
"""
Calculates kappa via overall confusion matrix, not averaging class-wise.
"""
def calc_kappa_v2(self, conf_matrix):
TP, TN, FN, FP = 0, 0, 0, 0
for k, v in conf_matrix.items():
TN += v['TN']
TP += v['TP']
FN += v['FN']
FP += v['FP']
total = TP + FP + FN + TN
obs_agr = TP + TN
exp_agr = (((TP + FP) * (TP + FN)) + ((FN + TN) * (FP + TN))) / total
if total == exp_agr:
raise Exception('Total of samples is equal to expected agreement!')
kappa = (obs_agr - exp_agr) / (total - exp_agr)
return np.round(kappa, decimals=4)
"""
Calculates regression metrics for given batch.
"""
def eval_reg_batch_metrics(self, preds, targets):
rmse = self.__root_mean_squared_error(y_pred=preds, y_true=targets)
r2 = self.__r2_score(y_pred=preds, y_true=targets)
mae = self.__mean_absolute_error(y_pred=preds, y_true=targets)
r = self.__r_score(y_pred=preds, y_true=targets)
# print('rmse: {:.4f}, r2: {:.4f}, mae: {:.4f}'.format(rmse, r2, mae))
""" Scikit metrics """
######################################################################
# if self.device != 'cpu':
# preds, targets = preds.cpu(), targets.cpu()
# preds, targets = preds.detach().numpy().flatten(), targets.detach().numpy().flatten()
# sk_rmse = mean_squared_error(y_true=targets, y_pred=preds, squared=False)
# sk_r2 = r2_score(y_true=targets, y_pred=preds)
# sk_mae = mean_absolute_error(y_true=targets, y_pred=preds)
# print('scikit rmse: {:.4f}, r2: {:.4f}, mae: {:.4f}'.format(sk_rmse, sk_r2, sk_mae))
######################################################################
return {'rmse' : rmse.item(), 'r2' : r2.item(), 'mae' : mae.item(), 'r' : r.item()}
"""
Calculates classification metrics for given batch.
"""
def eval_class_batch_metrics(self, preds, targets):
preds = torch.argmax(preds, 1) # No need to softmax before argmax, result is the same.
scores_overall, scores_per_class = self.calc_class_metrics(preds=preds, labels=targets)
kappa, f1, acc = scores_overall['kappa'], scores_overall['f1'], scores_overall['accuracy']
# print('kappa: {:.4f}, f1: {:.4f}, acc: {:.4f}'.format(kappa, f1, acc))
""" Scikit metrics """
######################################################################
# if self.device != 'cpu':
# preds, targets = preds.cpu(), targets.cpu()
# preds, targets = preds.detach().numpy().flatten(), targets.detach().numpy().flatten()
# sk_kappa = cohen_kappa_score(preds, targets)
# sk_f1 = f1_score(y_true=targets, y_pred=preds, average='macro')
# sk_acc = accuracy_score(y_true=targets, y_pred=preds)
# print('scikit kappa: {:.4f}, f1: {:.4f}, acc: {:.4f}'.format(sk_kappa, sk_f1, sk_acc))
######################################################################
return {'kappa' : kappa, 'f1' : f1, 'acc' : acc}
"""
Ideas:
X 1. Implement regression and classification scores in Pytorch.
"""
if __name__ == '__main__':
num_classes = 3
num_samples = 8
metrics = Metrics(num_folds=3, device='cpu', pred_type='reg+class', num_classes=num_classes, set_name='val')
fold = 0
preds = torch.rand(num_samples, num_classes)
targets = torch.randint(num_classes, (num_samples,))
metrics.update_conf_matrix(preds=preds, targets=targets, fold=fold)
print('preds: {}\ntargets: {}\nfold: {}\n'.format(preds, targets, fold))
for k, v in metrics.conf_mat.items():
print('{}: \n {}'.format(k, v))
print('Normed conf mat')
for k, v in metrics.get_normed_conf_mat().items():
print('{}: \n {}'.format(k, v))
# """ Classification """
# labels = torch.randint(0, num_classes, (num_samples,))
# preds = torch.rand(num_samples, num_classes)
# metrics.eval_class_batch_metrics(preds=preds, targets=labels)
# """ Regression """
# # preds = torch.rand(num_samples)
# # targets = torch.rand(num_samples)
# # metrics.eval_reg_batch_metrics(preds=preds, targets=targets)