-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcoolstuff.py
235 lines (202 loc) · 8.65 KB
/
coolstuff.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
from typing import *
__all__ = ["Array"]
class Array():
"""
It's a Multi dimensional array based on dictionary data structure.
and it will stored stuff in a dictionary,
with tuple matching with the values.
Features:
* Easy to instantiate
* Memory efficient for huge array.
* slicing; like matlab, or nparray.
not a feature:
* Indexing with negative integers.
"""
def __init__(self, Indexranges:Tuple[int], defaultvalue=None):
"""
:param Indexranges:
It's a tuple, the length of the tuple is the dimension of the array
the integer value in side the tuple is the range for that specific dimension.
:param defaultvalue:
If the index is not yet set, what is the default value you want to get from it?
"""
for I in Indexranges:
assert I > 0, "range of a certain dimension cannot be negative nor zero."
self.__DefaultValue = defaultvalue # believe me, this is necessary for faster copying of the array.
self.__Dimension = len(Indexranges)
self.__IndexRange = Indexranges
self.__Map = {}
return
def size(self):
return self.__IndexRange
def get_specific_element(self, indices: Tuple[int]):
"""
Receives a tuple with length matching the dimension of the array.
:return:
that specific element at that index of the array.
"""
assert len(indices) == self.__Dimension, "Dimension mismatch"
return self.__DefaultValue if indices not in self.__Map else self.__Map[indices]
def set_specific_element(self, indices: Tuple[int], value):
"""
Given a tuple representing a multi-dimensional index, it will return
the value at the specific index.
:param indices:
A tuple
:param value:
The value,
:return:
the value, if not set before, the default value will be returned.
"""
for I, J in zip(self.__IndexRange, indices):
assert I > J >= 0, f"Index out of range: J:{J}, I:{I}"
self.__Map[indices] = value
return
def slice(self, slicer: Tuple[int]):
"""
Slice a sub array inside the array.
example:
Let's say that the array "Arr" is 2d, m by n, then
indices: (-1, 3)
then it will slice (?, 3) and put then into an array with dimension (Arr.size()[0], 1)
which is basically the third column, but as a m by 1 array.
:param slicer:
A list of tuple with dimension less than or equal to the dimension of the
array.
:return:
Another instance of the Array class.
"""
# check if the slicing index is valid:
for I, E in enumerate(slicer):
assert -1 <= E <= self.__IndexRange[I], "Invalid index for slicing."
# Flatten the dimension from the slicing index:'
NewDimension = []
for I, E in enumerate(slicer):
NewDimension.append(self.__IndexRange[I] if E == -1 else 1)
# Copying to a new multi-dimensional Array.
NewArr = Array(tuple(NewDimension), self.__DefaultValue)
def should_transfer(slicing, indices):
for E1, E2, I in zip(slicing, indices, range(len(indices))):
if E1 == -1:
continue
if E1 != E2:
return False
return True
for I in self.__Map.keys():
if should_transfer(slicer, I):
# Collapse that slice with -1
I_flatten = tuple([(E2 if E1 == -1 else 0) for E1, E2 in zip(slicer, I)])
NewArr.set_specific_element(I_flatten, self.get_specific_element(I))
return NewArr
def collapse(self):
"""
Collpase unecessary dimensions of the multi-dimension array.
e.g.
Say the array has dimension (1,100), then it will reduced to (100),
Which is just a 1d array.
Say the array has dimension (1,1,1), then it will reduced to (1), which is just a scaler.
:return:
None
"""
pass
def filter(self, fxn:Callable, mode=1):
"""
filter out a sub array from this array, using a conditional function given as a parameter.
:param fxn:
The conditional function used to filter out elements in the multi-dimension array.
:param mode:
if it's set to 0 then we are filtering by elements in the array, meaning that
the elements will be passed as a parameters into the function.
if it's set to 1, then it will be filtering by indices in the multidimensional array.
:return:
In instance of the Array class.
"""
NewArr = Array(self.size())
if mode == 1 or 2:
for K, V in self.__Map.items():
if fxn(V if mode == 1 else K):
NewArr[K] = V
return NewArr
def __getitem__(self, item: Tuple[Union[int, str, callable]]):
"""
* Getting an specific item from a specific index
e.g. (0,0)
Return the element in the first row and first column.
* Slicing the array.
e.g. (-1, 0)
Return the first column as a n by 1 array.
* Slicing the array with a boolean function (Could be filter with tuples OR value of the tuples...):
e.g:
["f1", fxn: callable]
The first element in the indexer specified that, function putting into the indexer is going
to receive elements in the array.
["f2", fxn: callable]
f2, this is setting that, the given callable function is going to receive a tuple: the index.
* Slicing the array with list of indices:
Given a list of indices, and it will return a list of values.
e.g:
TODO: THIS IS HARD TO IMPLEMENT.
* Filtering out the elements in the array using the a list of indices matching the dimension of the array.
TODO: IMPLEMENTED THIS SHIT.
:param item:
* A Tuple of integers or None, other stuff is not allowed.
* Fxn filtering:
["f1", fxn: callable]
using a given fxn to get the items you want, stored in a new array having the same size.
:return:
It really depends on the context, but all returns a specific value in the array,
or an instance of the Array.
"""
if item[0] == "f1" or item[0] == "f2": # User want to filter using custom callable function.
return self.filter(item[1], item[0][1])
# The dimension of the indexer should be the same as the one that instantiated the Array.
assert len(item) == self.__Dimension, f"Can't index a {self.size()} with the index {item}"
if -1 not in item:
return self.get_specific_element(item)
return self.slice(item)
def __setitem__(self, key: Tuple[Union[int, str, callable]], value):
if len(key) == self.__Dimension:
self.set_specific_element(key, value)
return
raise Exception("Not Implemented yet")
def empty_array(*integers):
"""
A static method that construct the thing, with None in it.
:param integers:
Integers, the index ranges and dimension of the multi-dimension array.
:return:
An instance of the empty array with the given set of dimension.
"""
return Array(integers)
def __repr__(self):
return str(self.__Map)
def brief_test1():
print("Setting and getting specif elements")
arr = Array((3, 3, 3))
assert arr[2, 2, 2] is None
arr[1, 1, 1] = 9
assert arr[1, 1, 1] == 9
assert arr.size() == (3, 3, 3)
print("brief_test1 END")
def brief_test2():
print("Testing slicing the multidimensional array. ")
arr = Array((3, 3, 3))
arr[1, 1, 1] = "fuck you"
print(f"arr_size{arr.size()}")
print(arr[1, -1, -1])
print("Self Mapping... ")
n = 5
arr = Array((n, n, n))
for I, J, K in [(i, j, k) for i in range(n) for j in range(n) for k in range(n)]:
arr[I, J, K] = f"I:{I}, J:{J}, K:{K}"
print(f"arr_size({arr.size()})")
print(arr)
print("slicing with slicer [None, None, 3]")
print(arr[-1, -1, 3])
def main():
print("main method run")
brief_test1()
brief_test2()
pass
if __name__ == "__main__":
main()