-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathsplit_data.py
45 lines (35 loc) · 1.44 KB
/
split_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import argparse
import os
from collections import defaultdict
import numpy as np
if __name__ == '__main__':
parser = argparse.ArgumentParser('Meme dataset split')
parser.add_argument('--data-dir', '-d', required=True, type=str,
help='directory with the dataset')
parser.add_argument('--splits', type=int, default=(2500, 250, 250), nargs=3,
help='sizes of train/val/test splits for each template')
parser.add_argument('--random-state', type=int, default=0,
help='random seed for the data shuffling')
args = parser.parse_args()
np.random.seed(0)
start_ids = np.cumsum([0] + args.splits)
end_ids = start_ids[1:]
labels, captions = defaultdict(bool), defaultdict(list)
with open(os.path.join(args.data_dir, 'captions.txt'), 'r') as f:
for line in f:
label, _, _ = line.strip().split('\t')
captions[label].append(line)
labels[label] = True
splits = ['train', 'val', 'test']
f_splits = [
open(os.path.join(args.data_dir, f'captions_{split}.txt'), 'w')
for split in splits
]
for label in labels.keys():
indices = np.arange(len(captions[label]))
np.random.shuffle(indices)
for i, f in enumerate(f_splits):
for idx in sorted(indices[start_ids[i]:end_ids[i]]):
f.write(captions[label][idx])
for f in f_splits:
f.close()