-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlc_0004_median_two_arrays.py
72 lines (50 loc) · 1.9 KB
/
lc_0004_median_two_arrays.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import unittest
from typing import List
def median(nums):
if nums:
return (nums[(len(nums) - 1) // 2] + nums[len(nums) // 2]) / 2
def median_lr(nums, l, r):
if r > l:
return (nums[l + (r - l - 1) // 2] + nums[l + (r - l) // 2]) / 2
class Solution:
def findMedianSortedArrays(self, nums1_g: List[int], nums2_g: List[int]) -> float:
def find(nums1, nums2, n1l, n1r, n2l, n2r) -> float:
if n1r + n2r - n1l - n2l < 30:
return median(sorted(nums1[n1l:n1r] + nums2[n2l:n2r]))
m1 = median_lr(nums1, n1l, n1r)
m2 = median_lr(nums2, n2l, n2r)
if m1 is None:
return m2
if m2 is None:
return m1
if m1 > m2:
nums1, nums2 = nums2, nums1
n1l, n2l = n2l, n1l
n1r, n2r = n2r, n1r
len1 = n1r - n1l
len2 = n2r - n2l
if nums1[len1 - 1 + n1l] <= nums2[n2l]:
return median(nums1[n1l:n1r] + nums2[n2l:n2r])
t1 = max((len1 - 6), 0) // 2 # 1
t2 = max((len2 - 6), 0) // 2 # 0
l1 = t1 # 1
r2 = len2 - t2 # 1
if t2 > t1:
r1 = len1
l2 = t2 - t1
else:
r1 = len1 - t1 + t2 # 3
l2 = 0 # 0
return find(nums1, nums2, n1l + l1, n1l + r1, n2l + l2, n2l + r2)
return find(nums1_g, nums2_g, 0, len(nums1_g), 0, len(nums2_g))
class MyTestCase(unittest.TestCase):
def setUp(self) -> None:
self.solution = Solution()
def test_failing1(self):
self.assertEqual(self.solution.findMedianSortedArrays([1, 2, 4, 5], [3]), 3)
def test_failing2(self):
self.assertEqual(
self.solution.findMedianSortedArrays([2], [1, 3, 4, 5, 6, 7, 8, 9, 10]), 5.5
)
if __name__ == "__main__":
unittest.main()