-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathdemo.py
112 lines (101 loc) · 4.02 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import cv2
import numpy as np
model_dir = "models"
model_name = "RepVGG-A0"
with open('imagenet_classes.txt') as f:
classes = [line.strip() for line in f.readlines()]
def preprocess(img):
img = cv2.resize(img,(224,224))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = np.float32(img)/255.0
img[:,:,]-=[0.485, 0.456, 0.406]
img[:,:,]/=[0.229, 0.224, 0.225]
return img
def print_caffe_featrues():
with open("output/caffe_outputs.txt","w") as f:
for feature in net.blobs:
data = net.blobs[feature].data.squeeze()#.reshape(-1,4)
f.write(feature+str(data.shape)+"\n")
f.write(str(data)+"\n")
def demo_caffe(img):
print("demo caffe")
import caffe
np.set_printoptions(precision=6, suppress=True)
net = caffe.Net(model_dir+"/"+model_name+".prototxt",model_dir+"/"+model_name+".caffemodel",caffe.TEST)
net.blobs[net.inputs[0]].data[...] = preprocess(img).transpose(2,0,1)
net.forward()
pred = net.blobs[net.outputs[0]].data[0]
index = np.argsort(pred)[::-1]
for i in range(5):
print(index[i], classes[index[i]], pred[index[i]])
def demo_dnn(img):
print("demo dnn")
net = cv2.dnn.readNet(model_dir+"/"+model_name+".prototxt",model_dir+"/"+model_name+".caffemodel")
img = preprocess(img)
blob = cv2.dnn.blobFromImage(img)
net.setInput(blob)
pred = net.forward()[0]
index = np.argsort(pred)[::-1]
for i in range(5):
print(index[i], classes[index[i]], pred[index[i]])
def print_weights_all(model):
np.set_printoptions(precision=6, suppress=True)
with open("output/pytorch_weights.txt", "w") as f:
parameters = model.state_dict()
for name in parameters:
parameter = parameters[name].detach().cpu().numpy().squeeze()
shape = parameter.shape
print(name, shape)
f.write(str(name)+str(shape)+"\n")
print(parameter)
f.write(str(parameter)+"\n")
def get_features(model, img):
import torch
np.set_printoptions(precision=6, suppress=True)
features = {}
hooks = []
layer_instances = {}
def add_hooks(module):
def hook(module, input, output):
instance_index = 1
class_name = str(module.__class__.__name__)
if class_name not in layer_instances:
layer_instances[class_name] = instance_index
else:
instance_index = layer_instances[class_name] + 1
layer_instances[class_name] = instance_index
layer_name = class_name + "_"+str(instance_index)
features[layer_name] = output
if not isinstance(module, torch.nn.ModuleList) and not isinstance(module, torch.nn.Sequential) and module != model:
hooks.append(module.register_forward_hook(hook))
model.apply(add_hooks)
model(img)
with open("output/features.txt","w") as f:
input_np = img.detach().cpu().numpy().squeeze()
f.write("blob1 "+str(input_np.shape)+"\n")
f.write(str(input_np)+"\n")
for feature in features:
fvalues = features[feature].detach().cpu().numpy().squeeze()
print(feature, fvalues.shape)
print(fvalues)
f.write(feature+" "+str(fvalues.shape)+"\n")
f.write(str(fvalues)+"\n")
def demo_pytorch(img):
print("demo pytorch")
import torch
from repvgg import repvgg_model_convert, create_RepVGG_A0
model = create_RepVGG_A0(deploy=True)
model.load_state_dict(torch.load(model_dir+'/'+model_name+'-deploy.pth'))
img = preprocess(img)
img = torch.from_numpy(img.transpose(2,0,1)).unsqueeze(0)
#print_weights_all(model)
#get_features(model, img)
pred = model(img)
_, indices = torch.sort(pred, descending=True)
percentage = torch.nn.functional.softmax(pred, dim=1)[0]
[print(idx.detach().cpu().item(), classes[idx], percentage[idx].item()) for idx in indices[0][:5]]
if __name__=="__main__":
img = cv2.imread("images/cat.jpg")
demo_caffe(img)
demo_dnn(img)
demo_pytorch(img)