-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathutils.py
81 lines (68 loc) · 2.11 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
# file: utils.py
# author: BINWong
# time: 2019/1/9 14:23
# Copyright 2019 BINWong. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ------------------------------------------------------------------------
import pickle
def get_stopwords():
with open('data/stopword.txt', 'r', encoding='utf-8') as f:
stopword = [line.strip() for line in f]
return set(stopword)
def generate_ngram(input_list, n):
"""
:param input_list: ['台湾', '中', ····· '时', '电子报'] 这个列表可能是空的
:param n: 3
:return:
"""
result = []
# 这里不同请看 README.md
for i in range(1, n + 1):
result.extend(zip(*[input_list[j:] for j in range(i)]))
return result
def load_dictionary(filename):
"""
加载外部词频记录
:param filename:
:return:
"""
word_freq = {}
print('------> 加载外部词集')
with open(filename, 'r', encoding='utf-8') as f:
for line in f:
try:
line_list = line.strip().split(' ')
# 规定最少词频
if int(line_list[1]) > 2:
word_freq[line_list[0]] = line_list[1]
except IndexError as e:
print(line)
continue
"""
{
'成功': '3',
·····
'赋予': '6'
}
"""
return word_freq
def save_model(model, filename):
with open(filename, 'wb') as fw:
# 数据序列
pickle.dump(model, fw)
def load_model(filename):
with open(filename, 'rb') as fr:
# 反序列化
model = pickle.load(fr)
return model