forked from alibaba/havenask
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlocal_chatglm.py
47 lines (42 loc) · 1.98 KB
/
local_chatglm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import os
import torch
import logging
from transformers import AutoTokenizer, AutoModel
from util.torch_util import torch_gc
class LocalChatGLM(object):
MODEL_NAME = os.environ.get('CHATGLM_MODEL') or 'THUDM/chatglm-6b'
_INSTANCE = None
def __init__(self):
self.tokenizer = AutoTokenizer.from_pretrained(self.MODEL_NAME, trust_remote_code=True)
self.model = AutoModel.from_pretrained(self.MODEL_NAME, trust_remote_code=True)
if torch.cuda.is_available():
self.model.half().cuda()
else:
self.model.float()
self.model.eval()
logging.info(f'load chatglm model[{self.MODEL_NAME}] success')
async def chat(self, prompt, history, max_length, top_p, temperature):
response, history = self.model.chat(self.tokenizer,
prompt,
history=history,
max_length=max_length,
top_p=top_p,
temperature=temperature)
torch_gc()
logging.info(f'prompt:{prompt}, response:{repr(response)}')
return response, history
async def stream_chat(self, prompt, history, max_length, top_p, temperature):
for response, history in self.model.stream_chat(self.tokenizer,
prompt,
history=history,
max_length=max_length,
top_p=top_p,
temperature=temperature):
yield response, history
logging.info(f'prompt:{prompt}, response:{repr(response)}')
torch_gc()
@classmethod
def get_instance(cls):
if cls._INSTANCE is None:
cls._INSTANCE = LocalChatGLM()
return cls._INSTANCE