forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
79 lines (63 loc) · 2.52 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import paddle
from model import CrossEntropyWithKL, VAESeq2SeqModel, Perplexity, NegativeLogLoss, TrainCallback
from args import parse_args
from data import create_data_loader
def train(args):
print(args)
device = paddle.set_device(args.device)
train_loader, dev_loader, test_loader, vocab, bos_id, pad_id, train_data_len = create_data_loader(
args)
net = VAESeq2SeqModel(
embed_dim=args.embed_dim,
hidden_size=args.hidden_size,
latent_size=args.latent_size,
vocab_size=len(vocab) + 2,
num_layers=args.num_layers,
init_scale=args.init_scale,
enc_dropout=args.enc_dropout,
dec_dropout=args.dec_dropout)
gloabl_norm_clip = paddle.nn.ClipGradByGlobalNorm(args.max_grad_norm)
anneal_r = 1.0 / (args.warm_up * train_data_len / args.batch_size)
cross_entropy = CrossEntropyWithKL(
base_kl_weight=args.kl_start, anneal_r=anneal_r)
model = paddle.Model(net)
optimizer = paddle.optimizer.Adam(
args.learning_rate,
parameters=model.parameters(),
grad_clip=gloabl_norm_clip)
if args.init_from_ckpt:
model.load(args.init_from_ckpt)
print("Loaded checkpoint from %s" % args.init_from_ckpt)
ppl_metric = Perplexity(loss=cross_entropy)
nll_metric = NegativeLogLoss(loss=cross_entropy)
model.prepare(
optimizer=optimizer,
loss=cross_entropy,
metrics=[ppl_metric, nll_metric])
model.fit(train_data=train_loader,
eval_data=dev_loader,
epochs=args.max_epoch,
save_dir=args.model_path,
shuffle=False,
callbacks=[TrainCallback(ppl_metric, nll_metric, args.log_freq)],
log_freq=args.log_freq)
# Evaluation
print('Start to evaluate on test dataset...')
model.evaluate(test_loader, log_freq=len(test_loader))
if __name__ == '__main__':
args = parse_args()
train(args)