diff --git a/docs/README.md b/docs/README.md index 6f999629a..600ee5405 100644 --- a/docs/README.md +++ b/docs/README.md @@ -112,4 +112,4 @@ _This disclaimer was adapted from the [MetPy project](https://github.com/Unidata Yunjun, Z., Fattahi, H., and Amelung, F. (2019), Small baseline InSAR time series analysis: Unwrapping error correction and noise reduction, _Computers & Geosciences_, _133_, 104331. [ [doi](https://doi.org/10.1016/j.cageo.2019.104331) \| [arxiv](https://doi.org/10.31223/osf.io/9sz6m) \| [data](https://doi.org/10.5281/zenodo.3464190) \| [notebook](https://github.com/geodesymiami/Yunjun_et_al-2019-MintPy) ] -In addition to the above, we recommend that you cite the original publications that describe the algorithms used in your specific analysis. They are noted briefly in the [default template file](../mintpy/defaults/smallbaselineApp.cfg) and listed in the [references.md file](./references.md). +In addition to the above, we recommend that you cite the original publications that describe the algorithms used in your specific analysis. They are noted briefly in the [default template file](../src/mintpy/defaults/smallbaselineApp.cfg) and listed in the [reference file](./references.md). diff --git a/docs/references.md b/docs/references.md index b918d0ee7..374479713 100644 --- a/docs/references.md +++ b/docs/references.md @@ -1,45 +1,67 @@ -## Revalent Scientific Papers +## Revalent Literature -+ Berardino, P., G. Fornaro, R. Lanari, and E. Sansosti (2002), A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms, _Geoscience and Remote Sensing, IEEE Transactions on, 40_(11), 2375-2383, doi:10.1109/TGRS.2002.803792. ++ Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. _IEEE Transactions on Geoscience and Remote Sensing, 40_(11), 2375-2383. doi:[10.1109/TGRS.2002.803792](https://doi.org/10.1109/TGRS.2002.803792) -+ Chaussard, E., F. Amelung, and Y. Aoki (2013), Characterization of open and closed volcanic systems in Indonesia and Mexico using InSAR time series, _Journal of Geophysical Research: Solid Earth, 118_(8), 3957-3969, doi:10.1002/jgrb.50288. ++ Blewitt, G., Hammond, W., & Kreemer, C. (2018). Harnessing the GPS data explosion for interdisciplinary science. _Eos, 99_. doi:[10.1029/2018EO104623](https://doi.org/10.1029/2018EO104623) -+ Chaussard, E., R. Bürgmann, H. Fattahi, R. M. Nadeau, T. Taira, C. W. Johnson, and I. Johanson (2015), Potential for larger earthquakes in the East San Francisco Bay Area due to the direct connection between the Hayward and Calaveras Faults, _Geophysical Research Letters, 42_(8), 2734-2741, doi:10.1002/2015GL063575. ++ Chaussard, E., Amelung, F., & Aoki, Y. (2013). Characterization of open and closed volcanic systems in Indonesia and Mexico using InSAR time series. _Journal of Geophysical Research: Solid Earth, 118_(8), 3957-3969. doi:[10.1002/jgrb.50288](https://doi.org/10.1002/jgrb.50288) -+ Chen, C. W., and H. A. Zebker (2001), Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization, _JOSA A, 18_(2), 338-351, doi:10.1364/JOSAA.18.000338. ++ Chaussard, E., Bürgmann, R., Fattahi, H., Nadeau, R. M., Taira, T., Johnson, C. W., & Johanson, I. (2015). Potential for larger earthquakes in the East San Francisco Bay Area due to the direct connection between the Hayward and Calaveras Faults. _Geophysical Research Letters, 42_(8), 2734-2741. doi:[10.1002/2015GL063575](https://doi.org/10.1002/2015GL063575) -+ Doin, M. P., C. Lasserre, G. Peltzer, O. Cavalié, and C. Doubre (2009), Corrections of stratified tropospheric delays in SAR interferometry: Validation with global atmospheric models, _Journal of Applied Geophysics, 69_(1), 35-50, doi:10.1016/j.jappgeo.2009.03.010. ++ Chen, C. W., & Zebker, H. A. (2001). Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization. _Journal of the Optical Society of America A, 18_(2), 338-351. doi:[10.1364/JOSAA.18.000338](https://doi.org/10.1364/JOSAA.18.000338) -+ Fattahi, H., and F. Amelung (2013), DEM Error Correction in InSAR Time Series, _Geoscience and Remote Sensing, IEEE Transactions on, 51_(7), 4249-4259, doi:10.1109/TGRS.2012.2227761. ++ Doin, M. P., Lasserre, C., Peltzer, G., Cavalié, O., & Doubre, C. (2009). Corrections of stratified tropospheric delays in SAR interferometry: Validation with global atmospheric models. _Journal of Applied Geophysics, 69_(1), 35-50. doi:[10.1016/j.jappgeo.2009.03.010](https://doi.org/10.1016/j.jappgeo.2009.03.010) -+ Fattahi, H., and F. Amelung (2015), InSAR bias and uncertainty due to the systematic and stochastic tropospheric delay, _Journal of Geophysical Research: Solid Earth, 120_(12), 8758-8773, doi:10.1002/2015JB012419. ++ Efron, B., & Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. _Statistical science_, 54-75. doi:[10.1214/ss/1177013815](https://doi.org/10.1214/ss/1177013815) -+ Fattahi, H., P. Agram, and M. Simons (2016), A Network-Based Enhanced Spectral Diversity Approach for TOPS Time-Series Analysis, _IEEE Transactions on Geoscience and Remote Sensing, 55_(2), 777-786, doi:10.1109/TGRS.2016.2614925. ++ Fattahi, H., & Amelung, F. (2013). DEM Error Correction in InSAR Time Series. _IEEE Transactions on Geoscience and Remote Sensing, 51_(7), 4249-4259. doi:[10.1109/TGRS.2012.2227761](https://doi.org/10.1109/TGRS.2012.2227761) -+ Jolivet, R., R. Grandin, C. Lasserre, M. P. Doin, and G. Peltzer (2011), Systematic InSAR tropospheric phase delay corrections from global meteorological reanalysis data, _Geophysical Research Letters, 38_(17), L17311, doi:10.1029/2011GL048757. ++ Fattahi, H., & Amelung, F. (2015). InSAR bias and uncertainty due to the systematic and stochastic tropospheric delay. _Journal of Geophysical Research: Solid Earth, 120_(12), 8758-8773. doi:[10.1002/2015JB012419](https://doi.org/10.1002/2015JB012419) -+ Jolivet, R., P. S. Agram, N. Y. Lin, M. Simons, M. P. Doin, G. Peltzer, and Z. Li (2014), Improving InSAR geodesy using global atmospheric models, _Journal of Geophysical Research: Solid Earth, 119_(3), 2324-2341, doi:10.1002/2013JB010588. ++ Fattahi, H., Agram, P., & Simons, M. (2016). A Network-Based Enhanced Spectral Diversity Approach for TOPS Time-Series Analysis. _IEEE Transactions on Geoscience and Remote Sensing, 55_(2), 777-786. doi:[10.1109/TGRS.2016.2614925](https://doi.org/10.1109/TGRS.2016.2614925) -+ Marinkovic, P., and Y. Larsen (2013), Consequences of long-term ASAR local oscillator frequency decay - An empirical study of 10 years of data, paper presented at _Proceedings of the Living Planet Symposium_ (abstract), European Space Agency, Edinburgh, U. K. ++ Fattahi, H., Simons, M., & Agram, P. (2017). InSAR Time-Series Estimation of the Ionospheric Phase Delay: An Extension of the Split Range-Spectrum Technique. _IEEE Transactions on Geoscience and Remote Sensing, 55_(10), 5984-5996. doi:[10.1109/TGRS.2017.2718566](https://doi.org/10.1109/TGRS.2017.2718566) -+ Morales Rivera, A. M., F. Amelung, and P. Mothes (2016), Volcano Deformation Survey over the Northern and Central Andes with ALOS InSAR Time Series, _Geochemistry, Geophysics, Geosystems_, 17, 2869-2883, doi:10.1002/2016GC006393. ++ Gomba, G., Parizzi, A., Zan, F. D., Eineder, M., & Bamler, R. (2016). Toward Operational Compensation of Ionospheric Effects in SAR Interferograms: The Split-Spectrum Method. _IEEE Transactions on Geoscience and Remote Sensing, 54_(3), 1446-1461. doi:[10.1109/TGRS.2015.2481079](https://doi.org/10.1109/TGRS.2015.2481079) -+ Pepe, A., and R. Lanari (2006), On the extension of the minimum cost flow algorithm for phase unwrapping of multitemporal differential SAR interferograms, _Geoscience and Remote Sensing, IEEE Transactions on, 44_(9), 2374-2383, doi:10.1109/TGRS.2006.873207. ++ Heflin, M., Donnellan, A., Parker, J., Lyzenga, G., Moore, A., Ludwig, L. G., et al. (2020). Automated Estimation and Tools to Extract Positions, Velocities, Breaks, and Seasonal Terms From Daily GNSS Measurements: Illuminating Nonlinear Salton Trough Deformation. _Earth and Space Scien10.1029/2011JB008731ce, 7_(7), e2019EA000644, doi:[10.1029/2019EA000644](https://doi.org/10.1029/2019EA000644) -+ Perissin, D., and T. Wang (2012), Repeat-pass SAR interferometry with partially coherent targets, _Geoscience and Remote Sensing, IEEE Transactions on, 50_(1), 271-280, doi:10.1109/tgrs.2011.2160644. ++ Hetland, E., Musé, P., Simons, M., Lin, Y., Agram, P., & DiCaprio, C. (2012). Multiscale InSAR time series (MInTS) analysis of surface deformation. _Journal of Geophysical Research: Solid Earth, 117_(B2). doi:[10.1029/2011JB008731](https://doi.org/10.1029/2011JB008731) -+ Rosen, P. A., S. Hensley, G. Peltzer, and M. Simons (2004), Updated repeat orbit interferometry package released, _Eos Trans. AGU, 85_(5), 47-47, doi:10.1029/2004EO050004. ++ Jolivet, R., Grandin, R., Lasserre, C., Doin, M. P., & Peltzer, G. (2011). Systematic InSAR tropospheric phase delay corrections from global meteorological reanalysis data. _Geophysical Research Letters, 38_(17), L17311. doi:[10.1029/2011GL048757](https://doi.org/10.1029/2011GL048757) -+ Rosen, P. A., E. Gurrola, G. F. Sacco, and H. Zebker (2012), The InSAR scientific computing environment, paper presented at _EUSAR 2012_, 23-26 April 2012. ++ Jolivet, R., Agram, P. S., Lin, N. Y., Simons, M., Doin, M. P., Peltzer, G., & Li, Z. (2014). Improving InSAR geodesy using global atmospheric models. _Journal of Geophysical Research: Solid Earth, 119_(3), 2324-2341. doi:[10.1002/2013JB010588](https://doi.org/10.1002/2013JB010588) -+ Tough, R. J. A., D. Blacknell, and S. Quegan (1995), A Statistical Description of Polarimetric and Interferometric Synthetic Aperture Radar Data, _Proceedings: Mathematical and Physical Sciences, 449_(1937), 567-589, doi:10.1098/rspa.1995.0059. ++ Kang, Y., Lu, Z., Zhao, C., Xu, Y., Kim, J.-w., & Gallegos, A. J. (2021). InSAR monitoring of creeping landslides in mountainous regions: A case study in Eldorado National Forest, California. _Remote Sensing of Environment, 258_, 112400. doi:[10.1016/j.rse.2021.112400](https://doi.org/10.1016/j.rse.2021.112400) -+ Werner, C., U. Wegmüller, T. Strozzi, and A. Wiesmann (2000), Gamma SAR and interferometric processing software, paper presented at _Proceedings of the ERS-Envisat symposium_, Gothenburg, Sweden. ++ Liang, C., Liu, Z., Fielding, E. J., & Bürgmann, R. (2018). InSAR Time Series Analysis of L-Band Wide-Swath SAR Data Acquired by ALOS-2. _IEEE Transactions on Geoscience and Remote Sensing, 56_(8), 4492-4506. doi:[10.1109/TGRS.2018.2821150](https://doi.org/10.1109/TGRS.2018.2821150) -+ Yu, C., Z. Li, and N. T. Penna (2018), Interferometric synthetic aperture radar atmospheric correction using a GPS-based iterative tropospheric decomposition model, Remote Sensing of Environment, 204, 109-121, doi:10.1016/j.rse.2017.10.038. ++ Liang, C., Agram, P., Simons, M., & Fielding, E. J. (2019). Ionospheric Correction of InSAR Time Series Analysis of C-band Sentinel-1 TOPS Data. _IEEE Transactions on Geoscience and Remote Sensing, 59_(9), 6755 - 6773. doi:[10.1109/TGRS.2019.2908494](https://doi.org/10.1109/TGRS.2019.2908494) -+ Yu, C., Z. Li, N. T. Penna, and P. Crippa (2018), Generic Atmospheric Correction Model for Interferometric Synthetic Aperture Radar Observations, Journal of Geophysical Research: Solid Earth, 123(10), 9202-9222, doi:10.1029/2017JB015305. ++ Marinkovic, P., & Larsen, Y. (2013). Consequences of long-term ASAR local oscillator frequency decay - An empirical study of 10 years of data. Paper presented at _Proceedings of the Living Planet Symposium_ (abstract), European Space Agency, Edinburgh, UK. -+ Yunjun, Z., H. Fattahi, and F. Amelung (2019), Small baseline InSAR time series analysis: Unwrapping error correction and noise reduction, _Computers & Geosciences, 133_, 104331, doi:10.1016/j.cageo.2019.104331. ++ Milbert, D. (2018), "solid: Solid Earth Tide", [Online]. Available: http://geodesyworld.github.io/SOFTS/solid.htm. Accessd on: 2020-09-06. -+ Zebker, H. A., P. A. Rosen, and S. Hensley (1997), Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps, _Journal of Geophysical Research: Solid Earth, 102_(B4), 7547-7563, doi:10.1029/96JB03804. ++ Morales Rivera, A. M., Amelung, F., & Mothes, P. (2016). Volcano Deformation Survey over the Northern and Central Andes with ALOS InSAR Time Series. _Geochemistry, Geophysics, Geosystems, 17_, 2869-2883. doi:[10.1002/2016GC006393](https://doi.org/10.1002/2016GC006393) + ++ Pepe, A., & Lanari, R. (2006). On the extension of the minimum cost flow algorithm for phase unwrapping of multitemporal differential SAR interferograms. _IEEE Transactions on Geoscience and Remote Sensing, 44_(9), 2374-2383. doi:[10.1109/TGRS.2006.873207](https://doi.org/10.1109/TGRS.2006.873207) + ++ Perissin, D., & Wang, T. (2012). Repeat-pass SAR interferometry with partially coherent targets. _IEEE Transactions on Geoscience and Remote Sensing, 50_(1), 271-280. doi:[10.1109/tgrs.2011.2160644](https://doi.org/10.1109/tgrs.2011.2160644) + ++ Rosen, P. A., Hensley, S., Peltzer, G., & Simons, M. (2004). Updated repeat orbit interferometry package released. _Eos Trans. AGU, 85_(5), 47-47. doi:[10.1029/2004EO050004](https://doi.org/10.1029/2004EO050004) + ++ Rosen, P. A., Gurrola, E., Sacco, G. F. & Zebker, H. (2012). The InSAR scientific computing environment. Paper presented at _EUSAR 2012_, Nuremberg, Germany. + ++ Seymour, M. S., & Cumming, I. G. (1994). Maximum likelihood estimation for SAR interferometry. Paper presented at the _Proceedings of IGARSS '94 - 1994 IEEE International Geoscience and Remote Sensing Symposium_. doi:[10.1109/IGARSS.1994.399711](https://doi.org/10.1109/IGARSS.1994.399711) + ++ Tough, R. J. A., Blacknell, D., & Quegan, S. (1995). A Statistical Description of Polarimetric and Interferometric Synthetic Aperture Radar Data. _Proceedings: Mathematical and Physical Sciences, 449_(1937), 567-589. doi:[10.1098/rspa.1995.0059](https://doi.org/10.1098/rspa.1995.0059) + ++ Werner, C., Wegmüller, U., Strozzi, T., & Wiesmann, A. (2000). Gamma SAR and interferometric processing software. Paper presented at the _Proceedings of the ERS-Envisat symposium_, Gothenburg, Sweden. + ++ Yu, C., Li, Z., Penna, N. T., & Crippa, P. (2018). Generic Atmospheric Correction Model for Interferometric Synthetic Aperture Radar Observations. _Journal of Geophysical Research: Solid Earth, 123_(10), 9202-9222. doi:[10.1029/2017JB015305](https://doi.org/10.1029/2017JB015305) + ++ Yunjun, Z., Fattahi, H., & Amelung, F. (2019). Small baseline InSAR time series analysis: Unwrapping error correction and noise reduction. _Computers & Geosciences, 133_, 104331. doi:[10.1016/j.cageo.2019.104331](https://doi.org/10.1016/j.cageo.2019.104331) + ++ Yunjun, Z., Fattahi, H., Pi, X., Rosen, P., Simons, M., Agram, P., & Aoki, Y. (2022). Range Geolocation Accuracy of C-/L-Band SAR and its Implications for Operational Stack Coregistration. IEEE Transactions on Geoscience and Remote Sensing, 60, 5227219. doi:[10.1109/TGRS.2022.3168509](https://doi.org/10.1109/TGRS.2022.3168509) + ++ Zebker, H. A., Rosen, P. A., & Hensley, S. (1997). Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps. _Journal of Geophysical Research: Solid Earth, 102_(B4), 7547-7563. doi:[10.1029/96JB03804](https://doi.org/10.1029/96JB03804) diff --git a/src/mintpy/objects/gnss.py b/src/mintpy/objects/gnss.py index 6d26b28e8..51b6cc4c3 100644 --- a/src/mintpy/objects/gnss.py +++ b/src/mintpy/objects/gnss.py @@ -21,10 +21,10 @@ from mintpy.utils import ptime, readfile, time_func, utils1 as ut GNSS_SITE_LIST_URLS = { - 'UNR' : 'http://geodesy.unr.edu/NGLStationPages/DataHoldings.txt', - 'ESESES' : 'http://garner.ucsd.edu/pub/measuresESESES_products/Velocities/ESESES_Velocities.txt', - 'JPL-SIDESHOW' : 'https://sideshow.jpl.nasa.gov/post/tables/table2.html', - 'GENERIC' : None, + 'UNR' : 'http://geodesy.unr.edu/NGLStationPages/DataHoldings.txt', + 'ESESES' : 'http://garner.ucsd.edu/pub/measuresESESES_products/Velocities/ESESES_Velocities.txt', + 'SIDESHOW' : 'https://sideshow.jpl.nasa.gov/post/tables/table2.html', + 'GENERIC' : None, } GNSS_SOURCES = list(GNSS_SITE_LIST_URLS.keys()) @@ -64,8 +64,8 @@ def search_gnss(SNWE, start_date=None, end_date=None, source='UNR', site_list_fi sites = read_UNR_site_list(site_list_file) elif source == 'ESESES': sites = read_ESESES_site_list(site_list_file) - elif source == 'JPL-SIDESHOW': - sites = read_JPL_SIDESHOW_site_list(site_list_file) + elif source == 'SIDESHOW': + sites = read_SIDESHOW_site_list(site_list_file) elif source == 'GENERIC': sites = read_GENERIC_site_list(site_list_file) @@ -143,7 +143,7 @@ def read_UNR_site_list(site_list_file:str): def read_ESESES_site_list(site_list_file:str): - """Return names and lon/lat values for JPL GNSS stations. + """Return names and lon/lat values for JPL/SOPAC ESESES GNSS stations. """ fc = np.loadtxt(site_list_file, skiprows=17, dtype=str) sites = { @@ -154,8 +154,8 @@ def read_ESESES_site_list(site_list_file:str): return sites -def read_JPL_SIDESHOW_site_list(site_list_file:str): - """Return names and lon/lat values for JPL-SIDESHOW GNSS stations. +def read_SIDESHOW_site_list(site_list_file:str): + """Return names and lon/lat values for JPL SIDESHOW GNSS stations. """ fc = np.loadtxt(site_list_file, comments='<', skiprows=9, dtype=str) sites = { @@ -348,8 +348,8 @@ def get_gnss_class(source:str): return GNSS_UNR elif source == 'ESESES': return GNSS_ESESES - elif source == 'JPL-SIDESHOW': - return GNSS_JPL_SIDESHOW + elif source == 'SIDESHOW': + return GNSS_SIDESHOW elif source == 'GENERIC': return GNSS_GENERIC else: @@ -791,6 +791,11 @@ class GNSS_UNR(GNSS): at University of Nevada, Reno (UNR). Website: http://geodesy.unr.edu/NGLStationPages/GlobalStationList + + Reference: + Blewitt, G., Hammond, W., & Kreemer, C. (2018). Harnessing the GPS data + explosion for interdisciplinary science. Eos, 99. doi:10.1029/2018EO104623 + """ def __init__(self, site: str, data_dir=None, version='IGS14', url_prefix=None): super().__init__( @@ -1037,17 +1042,25 @@ def read_displacement(self, start_date=None, end_date=None, print_msg=True, disp self.std_e, self.std_n, self.std_u) -class GNSS_JPL_SIDESHOW(GNSS): - """GNSS class for daily solutions processed by JPL-SIDESHOW. +class GNSS_SIDESHOW(GNSS): + """GNSS class for daily solutions processed by JPL SIDESHOW, + funded by NASA's Space Geodesy Task. Website: https://sideshow.jpl.nasa.gov/pub/ + https://sideshow.jpl.nasa.gov/post/series.html + + Reference: + Heflin, M., Donnellan, A., Parker, J., Lyzenga, G., Moore, A., Ludwig, L. G., et al. + (2020). Automated Estimation and Tools to Extract Positions, Velocities, Breaks, and + Seasonal Terms From Daily GNSS Measurements: Illuminating Nonlinear Salton Trough + Deformation. Earth and Space Science, 7(7), e2019EA000644, doi:10.1029/2019EA000644 """ def __init__(self, site: str, data_dir=None, version='IGS14', url_prefix=None): super().__init__( site=site, data_dir=data_dir, version=version, - source='JPL-SIDESHOW', + source='SIDESHOW', url_prefix=url_prefix, ) @@ -1068,7 +1081,7 @@ def get_site_lat_lon(self, print_msg=False) -> (float, float): Returns: self.lat/lon - float """ # need to refer to the site list - site_list_file = os.path.basename(GNSS_SITE_LIST_URLS['JPL-SIDESHOW']) + site_list_file = os.path.basename(GNSS_SITE_LIST_URLS['SIDESHOW']) # find site in site list file with open(site_list_file) as site_list: diff --git a/src/mintpy/utils/arg_utils.py b/src/mintpy/utils/arg_utils.py index a82eb8a49..b7c713a8a 100644 --- a/src/mintpy/utils/arg_utils.py +++ b/src/mintpy/utils/arg_utils.py @@ -278,8 +278,11 @@ def add_gnss_argument(parser): gnss.add_argument('--show-gnss','--show-gps', dest='disp_gnss', action='store_true', help='Show UNR GNSS location within the coverage.') gnss.add_argument('--gnss-source','--gnss-src','--gps-source', dest='gnss_source', default='UNR', - choices={'UNR', 'ESESES', 'JPL-SIDESHOW', 'GENERIC'}, - help='Source of the GNSS displacement solution (default: %(default)s).') + choices={'UNR', 'SIDESHOW', 'ESESES', 'GENERIC'}, + help='Source of the GNSS displacement solution (default: %(default)s).\n' + 'UNR : Nevada Geodetic Lab at Univ. of Nevada, Reno (Blewitt et al., 2018, Eos)\n' + 'SIDESHOW : Jet Propulsion Lab (JPL) GNSS time series (Heflin et al., 2020, ESS)\n' + 'ESESES : Enhanced Solid Earth Science ESDR System (ESESES) by JPL and SOPAC') # compare GNSS with InSAR gnss.add_argument('--gnss-comp','--gps-comp', dest='gnss_component', diff --git a/src/mintpy/utils/network.py b/src/mintpy/utils/network.py index cb7f27560..754ff04c3 100644 --- a/src/mintpy/utils/network.py +++ b/src/mintpy/utils/network.py @@ -244,7 +244,7 @@ def simulate_coherence_v2(date12_list, decor_time=200.0, coh_resid=0.2, inc_angl date_list = sorted(list(set(date1s + date2s))) tbase_list = ptime.date_list2tbase(date_list)[0] - SNR = 22 # NESZ = -22 dB from Table 1 in https://sentinels.copernicus.eu/web/sentinel/ + SNR = 10 ** (22 / 10) # NESZ = -22 dB from Table 1 in https://sentinels.copernicus.eu/web/sentinel/ coh_thermal = 1. / (1. + 1./SNR) # bperp @@ -314,7 +314,7 @@ def simulate_coherence(date12_list, baseline_file='bl_list.txt', sensor_name='En tbase_list = ptime.date_list2tbase(date_list)[0] # Thermal decorrelation (Zebker and Villasenor, 1992, Eq.4) - SNR = 19.5 # hardwired for Envisat (Guarnieri, 2013) + SNR = 10 ** (19.5 / 10) # hardwired for Envisat (Guarnieri, 2013) coh_thermal = 1. / (1. + 1./SNR) pbase_c = critical_perp_baseline(sensor_name, inc_angle)