-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrack_anything.py
198 lines (182 loc) · 6.84 KB
/
track_anything.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import PIL
from tqdm import tqdm
from tools.interact_tools import SamControler
from tracker.base_tracker import BaseTracker
from inpainter.base_inpainter import BaseInpainter
import numpy as np
import argparse
import re
from role_play import generate_self_play_conversation
def format_generated_conversation(dialogue, lan):
pattern_zh = r"\((\d+)\):(.*?)\n"
pattern_en = r"\((\d+)\): (.*?)\n"
matches = re.findall(
pattern_zh if lan == "zh" or lan == "Chinese" else pattern_en, dialogue
)
result = [(int(match[0]), match[1]) for match in matches]
return result
class TrackingAnything:
def __init__(self, sam_checkpoint, xmem_checkpoint, e2fgvi_checkpoint, args):
self.args = args
self.sam_checkpoint = sam_checkpoint
self.xmem_checkpoint = xmem_checkpoint
self.e2fgvi_checkpoint = e2fgvi_checkpoint
self.samcontroler = SamControler(
self.sam_checkpoint, args.sam_model_type, args.device
)
self.xmem = BaseTracker(self.xmem_checkpoint, device=args.device)
self.baseinpainter = BaseInpainter(self.e2fgvi_checkpoint, args.device)
def first_frame_click(
self, image: np.ndarray, points: np.ndarray, labels: np.ndarray, multimask=True
):
mask, logit, painted_image = self.samcontroler.first_frame_click(
image, points, labels, multimask
)
return mask, logit, painted_image
def generator(
self,
images: list,
template_mask: np.ndarray,
video_description: str,
objects_descriptions: list,
language: str,
font_size: int = 20,
color1: int = 0,
color2: int = 0,
color3: int = 0,
):
masks = []
logits = []
painted_images = []
objects_descriptions = "\n".join(objects_descriptions)
self_play_conversation = generate_self_play_conversation(
video_description, objects_descriptions, lan=language
)
formatted_conversation = format_generated_conversation(
self_play_conversation, language
)
parallel_conversation = self.generate_list(
images, formatted_conversation, type="fixed", language=language
)
for i in tqdm(range(len(images)), desc="Tracking image"):
if i == 0:
mask, logit, painted_image = self.xmem.track(
images[i],
template_mask,
cur_turn_dialogue=parallel_conversation[i],
font_size=font_size,
color1=color1,
color2=color2,
color3=color3,
)
masks.append(mask)
logits.append(logit)
painted_images.append(painted_image)
else:
mask, logit, painted_image = self.xmem.track(
images[i],
cur_turn_dialogue=parallel_conversation[i],
font_size=font_size,
color1=color1,
color2=color2,
color3=color3,
)
masks.append(mask)
logits.append(logit)
painted_images.append(painted_image)
return masks, logits, painted_images
def image_to_video_generator(
self,
template_frame,
all_masks: list,
image_description: str,
objects_descriptions: list,
language: str,
):
objects_descriptions = "\n".join(objects_descriptions)
self_play_conversation = generate_self_play_conversation(
image_description, objects_descriptions, lan=language
)
formatted_conversation = format_generated_conversation(
self_play_conversation, language
)
print(f"formatted_conversation: {formatted_conversation}")
all_painted_image_for_video = self.xmem.track_image_for_video(
template_frame, all_masks, formatted_conversation
)
return all_painted_image_for_video
def generate_list(
self, first_list, second_list, type="fixed", fps=30, language="zh"
):
# round robin
if type == "round_robin":
result_list = [
second_list[int(i // (len(first_list) / len(second_list)))]
for i in range(len(first_list))
]
else:
result_list = []
for item in second_list:
id, sentence = item
sentence_length = (
len(sentence)
if language == "zh" or language == "Chinese"
else len(sentence.split(" "))
)
copy_count = (
int((sentence_length / 5) * fps)
if language == "zh" or language == "Chinese"
else int((sentence_length / 2) * fps)
)
result_list.extend([item] * copy_count)
if len(result_list) > len(first_list):
result_list = result_list[: len(first_list)]
else:
while len(result_list) < len(first_list):
result_list.append(result_list[-1])
return result_list
def parse_augment():
parser = argparse.ArgumentParser()
parser.add_argument("--device", type=str, default="cuda:0")
parser.add_argument("--sam_model_type", type=str, default="vit_h")
parser.add_argument(
"--port",
type=int,
default=6080,
help="only useful when running gradio applications",
)
parser.add_argument("--debug", action="store_true")
parser.add_argument("--mask_save", default=False)
parser.add_argument("--checkpoints_dir", default="./checkpoints")
parser.add_argument("--font_size", default=40, type=int)
parser.add_argument("--cfg-path", required=True, help="path to configuration file.")
parser.add_argument(
"--options",
nargs="+",
help="override some settings in the used config, the key-value pair "
"in xxx=yyy format will be merged into config file (deprecate), "
"change to --cfg-options instead.",
)
args = parser.parse_args()
if args.debug:
print(args)
return args
if __name__ == "__main__":
masks = None
logits = None
painted_images = None
images = []
image = np.array(PIL.Image.open("/hhd3/gaoshang/truck.jpg"))
args = parse_augment()
# images.append(np.ones((20,20,3)).astype('uint8'))
# images.append(np.ones((20,20,3)).astype('uint8'))
images.append(image)
images.append(image)
mask = np.zeros_like(image)[:, :, 0]
mask[0, 0] = 1
trackany = TrackingAnything(
"/ssd1/gaomingqi/checkpoints/sam_vit_h_4b8939.pth",
"/ssd1/gaomingqi/checkpoints/XMem-s012.pth",
args,
)
masks, logits, painted_images = trackany.generator(images, mask)