diff --git a/ibllib/io/extractors/camera.py b/ibllib/io/extractors/camera.py index f3e5dbd1d..bf3c95528 100644 --- a/ibllib/io/extractors/camera.py +++ b/ibllib/io/extractors/camera.py @@ -16,6 +16,7 @@ from ibllib.io.extractors.base import get_session_extractor_type from ibllib.io.extractors.ephys_fpga import get_sync_fronts, get_sync_and_chn_map import ibllib.io.raw_data_loaders as raw +import ibllib.io.extractors.video_motion as vmotion from ibllib.io.extractors.base import ( BaseBpodTrialsExtractor, BaseExtractor, @@ -148,12 +149,30 @@ def _extract(self, sync=None, chmap=None, video_path=None, sync_label='audio', except AssertionError as ex: _logger.critical('Failed to extract using %s: %s', sync_label, ex) - # If you reach here extracting using sync TTLs was not possible - _logger.warning('Alignment by wheel data not yet implemented') + # If you reach here extracting using sync TTLs was not possible, we attempt to align using wheel motion energy + _logger.warning('Attempting to align using wheel') + + try: + if self.label not in ['left', 'right']: + # Can only use wheel alignment for left and right cameras + raise ValueError(f'Wheel alignment not supported for {self.label} camera') + + motion_class = vmotion.MotionAlignmentFullSession(self.session_path, self.label, upload=True) + new_times = motion_class.process() + if not motion_class.qc_outcome: + raise ValueError(f'Wheel alignment failed to pass qc: {motion_class.qc}') + else: + _logger.warning(f'Wheel alignment successful, qc: {motion_class.qc}') + return new_times + + except Exception as err: + _logger.critical(f'Failed to align with wheel: {err}') + if length < raw_ts.size: df = raw_ts.size - length _logger.info(f'Discarding first {df} pulses') raw_ts = raw_ts[df:] + return raw_ts diff --git a/ibllib/io/extractors/video_motion.py b/ibllib/io/extractors/video_motion.py index ef75187b5..981af8a18 100644 --- a/ibllib/io/extractors/video_motion.py +++ b/ibllib/io/extractors/video_motion.py @@ -4,21 +4,32 @@ """ import matplotlib import matplotlib.pyplot as plt +import matplotlib.gridspec as gridspec from matplotlib.widgets import RectangleSelector import numpy as np -from scipy import signal +from scipy import signal, ndimage, interpolate import cv2 from itertools import cycle import matplotlib.animation as animation import logging from pathlib import Path +from joblib import Parallel, delayed, cpu_count +from neurodsp.utils import WindowGenerator from one.api import ONE import ibllib.io.video as vidio from iblutil.util import Bunch +from ibllib.io.extractors.ephys_fpga import get_sync_fronts, get_sync_and_chn_map +import ibllib.io.raw_data_loaders as raw +import ibllib.io.extractors.camera as cam +from ibllib.plots.snapshot import ReportSnapshot import brainbox.video as video import brainbox.behavior.wheel as wh +from brainbox.singlecell import bin_spikes +from brainbox.behavior.dlc import likelihood_threshold, get_speed +from brainbox.task.trials import find_trial_ids import one.alf.io as alfio +from one.alf.exceptions import ALFObjectNotFound from one.alf.spec import is_session_path, is_uuid_string @@ -383,3 +394,520 @@ def process_key(event): anim.save(str(filename), writer=writer) else: plt.show() + + +class MotionAlignmentFullSession: + def __init__(self, session_path, label, **kwargs): + self.session_path = session_path + self.label = label + self.threshold = kwargs.get('threshold', 20) + self.upload = kwargs.get('upload', False) + self.twin = kwargs.get('twin', 150) + self.nprocess = kwargs.get('nprocess', int(cpu_count() - cpu_count() / 4)) + + self.load_data(sync=kwargs.get('sync', 'nidq'), location=kwargs.get('location', None)) + self.roi, self.mask = self.get_roi_mask() + + if self.upload: + self.one = ONE(mode='remote') + self.one.alyx.authenticate() + self.eid = self.one.path2eid(self.session_path) + + def load_data(self, sync='nidq', location=None): + def fix_keys(alf_object): + ob = Bunch() + for key in alf_object.keys(): + vals = alf_object[key] + ob[key.split('.')[0]] = vals + return ob + + alf_path = self.session_path.joinpath('alf') + wheel = (fix_keys(alfio.load_object(alf_path, 'wheel')) if location == 'SDSC' + else alfio.load_object(alf_path, 'wheel')) + self.wheel_timestamps = wheel.timestamps + wheel_pos, self.wheel_time = wh.interpolate_position(wheel.timestamps, wheel.position, freq=1000) + self.wheel_vel, _ = wh.velocity_filtered(wheel_pos, 1000) + self.camera_times = alfio.load_file_content(next(alf_path.glob(f'_ibl_{self.label}Camera.times*.npy'))) + self.camera_path = str(next(self.session_path.joinpath('raw_video_data').glob( + f'_iblrig_{self.label}Camera.raw*.mp4'))) + self.camera_meta = vidio.get_video_meta(self.camera_path) + + # TODO should read in the description file to get the correct sync location + if sync == 'nidq': + sync, chmap = get_sync_and_chn_map(self.session_path, sync_collection='raw_ephys_data') + sr = get_sync_fronts(sync, chmap[f'{self.label}_camera']) + self.ttls = sr.times[::2] + else: + cam_extractor = cam.CameraTimestampsBpod(session_path=self.session_path) + cam_extractor.bpod_trials = raw.load_data(self.session_path, task_collection='raw_behavior_data') + self.ttls = cam_extractor._times_from_bpod() + + self.tdiff = self.ttls.size - self.camera_meta['length'] + + if self.tdiff < 0: + self.ttl_times = self.ttls + self.times = np.r_[self.ttl_times, np.full((np.abs(self.tdiff)), np.nan)] + self.short_flag = True + elif self.tdiff > 0: + self.ttl_times = self.ttls[self.tdiff:] + self.times = self.ttls[self.tdiff:] + self.short_flag = False + + self.frate = round(1 / np.nanmedian(np.diff(self.ttl_times))) + + try: + self.trials = alfio.load_file_content(next(alf_path.glob('_ibl_trials.table*.pqt'))) + self.dlc = alfio.load_file_content(next(alf_path.glob(f'_ibl_{self.label}Camera.dlc*.pqt'))) + self.dlc = likelihood_threshold(self.dlc) + self.behavior = True + except (ALFObjectNotFound, StopIteration): + self.behavior = False + + self.frame_example = vidio.get_video_frames_preload(self.camera_path, np.arange(10, 11), mask=np.s_[:, :, 0]) + + def get_roi_mask(self): + + if self.label == 'right': + roi = ((450, 512), (120, 200)) + else: + roi = ((900, 1024), (850, 1010)) + roi_mask = (*[slice(*r) for r in roi], 0) + + return roi, roi_mask + + def find_contaminated_frames(self, video_frames, thresold=20, normalise=True): + high = np.zeros((video_frames.shape[0])) + for idx, frame in enumerate(video_frames): + ret, _ = cv2.threshold(cv2.GaussianBlur(frame, (5, 5), 0), 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) + high[idx] = ret + + if normalise: + high -= np.min(high) + + contaminated_frames = np.where(high > thresold)[0] + + return contaminated_frames + + def compute_motion_energy(self, first, last, wg, iw): + + if iw == wg.nwin - 1: + return + + cap = cv2.VideoCapture(self.camera_path) + frames = vidio.get_video_frames_preload(cap, np.arange(first, last), mask=self.mask) + idx = self.find_contaminated_frames(frames, self.threshold) + + if len(idx) != 0: + + before_status = False + after_status = False + + counter = 0 + n_frames = 200 + while np.any(idx == 0) and counter < 20 and iw != 0: + n_before_offset = (counter + 1) * n_frames + first -= n_frames + extra_frames = vidio.get_video_frames_preload(cap, frame_numbers=np.arange(first - n_frames, first), + mask=self.mask) + frames = np.concatenate([extra_frames, frames], axis=0) + + idx = self.find_contaminated_frames(frames, self.threshold) + before_status = True + counter += 1 + if counter > 0: + print(f'In before: {counter}') + + counter = 0 + while np.any(idx == frames.shape[0] - 1) and counter < 20 and iw != wg.nwin - 1: + n_after_offset = (counter + 1) * n_frames + last += n_frames + extra_frames = vidio.get_video_frames_preload(cap, frame_numbers=np.arange(last, last + n_frames), + mask=self.mask) + frames = np.concatenate([frames, extra_frames], axis=0) + idx = self.find_contaminated_frames(frames, self.threshold) + after_status = True + counter += 1 + + if counter > 0: + print(f'In after: {counter}') + + intervals = np.split(idx, np.where(np.diff(idx) != 1)[0] + 1) + for ints in intervals: + if len(ints) > 0 and ints[0] == 0: + ints = ints[1:] + if len(ints) > 0 and ints[-1] == frames.shape[0] - 1: + ints = ints[:-1] + th_all = np.zeros_like(frames[0]) + for idx in ints: + img = np.copy(frames[idx]) + blur = cv2.GaussianBlur(img, (5, 5), 0) + ret, th = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) + th = cv2.GaussianBlur(th, (5, 5), 10) + th_all += th + vals = np.mean(np.dstack([frames[ints[0] - 1], frames[ints[-1] + 1]]), axis=-1) + for idx in ints: + img = frames[idx] + img[th_all > 0] = vals[th_all > 0] + + if before_status: + frames = frames[n_before_offset:] + if after_status: + frames = frames[:(-1 * n_after_offset)] + + frame_me, _ = video.motion_energy(frames, diff=2, normalize=False) + + cap.release() + + return frame_me[2:] + + def compute_shifts(self, times, me, first, last, iw, wg): + + if iw == wg.nwin - 1: + return np.nan, np.nan + t_first = times[first] + t_last = times[last] + if np.isnan(t_last) and np.isnan(t_first): + return np.nan, np.nan + elif np.isnan(t_last): + t_last = times[np.where(~np.isnan(times))[0][-1]] + + mask = np.logical_and(times >= t_first, times <= t_last) + align_me = me[np.where(mask)[0]] + align_me = (align_me - np.nanmin(align_me)) / (np.nanmax(align_me) - np.nanmin(align_me)) + + # Find closest timepoints in wheel that match the camera times + wh_mask = np.logical_and(self.wheel_time >= t_first, self.wheel_time <= t_last) + if np.sum(wh_mask) == 0: + return np.nan, np.nan + xs = np.searchsorted(self.wheel_time[wh_mask], times[mask]) + xs[xs == np.sum(wh_mask)] = np.sum(wh_mask) - 1 + # Convert to normalized speed + vs = np.abs(self.wheel_vel[wh_mask][xs]) + vs = (vs - np.min(vs)) / (np.max(vs) - np.min(vs)) + + isnan = np.isnan(align_me) + + if np.sum(isnan) > 0: + where_nan = np.where(isnan)[0] + assert where_nan[0] == 0 + assert where_nan[-1] == np.sum(isnan) - 1 + + if np.all(isnan): + return np.nan, np.nan + + xcorr = signal.correlate(align_me[~isnan], vs[~isnan]) + shift = np.nanargmax(xcorr) - align_me[~isnan].size + 2 + + return shift, t_first + (t_last - t_first) / 2 + + def clean_shifts(self, x, n=1): + y = x.copy() + dy = np.diff(y, prepend=y[0]) + while True: + pos = np.where(dy == 1)[0] if n == 1 else np.where(dy > 2)[0] + # added frames: this doesn't make sense and this is noise + if pos.size == 0: + break + neg = np.where(dy == -1)[0] if n == 1 else np.where(dy < -2)[0] + + if len(pos) > len(neg): + neg = np.append(neg, dy.size - 1) + + iss = np.minimum(np.searchsorted(neg, pos), neg.size - 1) + imin = np.argmin(np.minimum(np.abs(pos - neg[iss - 1]), np.abs(pos - neg[iss]))) + + idx = np.max([0, iss[imin] - 1]) + ineg = neg[idx:iss[imin] + 1] + ineg = ineg[np.argmin(np.abs(pos[imin] - ineg))] + dy[pos[imin]] = 0 + dy[ineg] = 0 + + return np.cumsum(dy) + y[0] + + def qc_shifts(self, shifts, shifts_filt): + + ttl_per = (np.abs(self.tdiff) / self.camera_meta['length']) * 100 if self.tdiff < 0 else 0 + nan_per = (np.sum(np.isnan(shifts_filt)) / shifts_filt.size) * 100 + shifts_sum = np.where(np.abs(np.diff(shifts)) > 10)[0].size + shifts_filt_sum = np.where(np.abs(np.diff(shifts_filt)) > 1)[0].size + + qc = dict() + qc['ttl_per'] = ttl_per + qc['nan_per'] = nan_per + qc['shifts_sum'] = shifts_sum + qc['shifts_filt_sum'] = shifts_filt_sum + + qc_outcome = True + # If more than 10% of ttls are missing we don't get new times + if ttl_per > 10: + qc_outcome = False + # If too many of the shifts are nans it means the alignment is not accurate + if nan_per > 40: + qc_outcome = False + # If there are too many artefacts could be errors + if shifts_sum > 60: + qc_outcome = False + # If there are jumps > 1 in the filtered shifts then there is a problem + if shifts_filt_sum > 0: + qc_outcome = False + + return qc, qc_outcome + + def extract_times(self, shifts_filt, t_shifts): + + t_new = t_shifts - (shifts_filt * 1 / self.frate) + fcn = interpolate.interp1d(t_shifts, t_new, fill_value="extrapolate") + new_times = fcn(self.ttl_times) + + if self.tdiff < 0: + to_app = (np.arange(np.abs(self.tdiff), ) + 1) / self.frate + new_times[-1] + new_times = np.r_[new_times, to_app] + + return new_times + + @staticmethod + def single_cluster_raster(spike_times, events, trial_idx, dividers, colors, labels, weights=None, fr=True, + norm=False, + axs=None): + pre_time = 0.4 + post_time = 1 + raster_bin = 0.01 + psth_bin = 0.05 + raster, t_raster = bin_spikes( + spike_times, events, pre_time=pre_time, post_time=post_time, bin_size=raster_bin, weights=weights) + psth, t_psth = bin_spikes( + spike_times, events, pre_time=pre_time, post_time=post_time, bin_size=psth_bin, weights=weights) + + if fr: + psth = psth / psth_bin + + if norm: + psth = psth - np.repeat(psth[:, 0][:, np.newaxis], psth.shape[1], axis=1) + raster = raster - np.repeat(raster[:, 0][:, np.newaxis], raster.shape[1], axis=1) + + dividers = [0] + dividers + [len(trial_idx)] + if axs is None: + fig, axs = plt.subplots(2, 1, figsize=(4, 6), gridspec_kw={'height_ratios': [1, 3], 'hspace': 0}, + sharex=True) + else: + fig = axs[0].get_figure() + + label, lidx = np.unique(labels, return_index=True) + label_pos = [] + for lab, lid in zip(label, lidx): + idx = np.where(np.array(labels) == lab)[0] + for iD in range(len(idx)): + if iD == 0: + t_ids = trial_idx[dividers[idx[iD]] + 1:dividers[idx[iD] + 1] + 1] + t_ints = dividers[idx[iD] + 1] - dividers[idx[iD]] + else: + t_ids = np.r_[t_ids, trial_idx[dividers[idx[iD]] + 1:dividers[idx[iD] + 1] + 1]] + t_ints = np.r_[t_ints, dividers[idx[iD] + 1] - dividers[idx[iD]]] + + psth_div = np.nanmean(psth[t_ids], axis=0) + std_div = np.nanstd(psth[t_ids], axis=0) / np.sqrt(len(t_ids)) + + axs[0].fill_between(t_psth, psth_div - std_div, + psth_div + std_div, alpha=0.4, color=colors[lid]) + axs[0].plot(t_psth, psth_div, alpha=1, color=colors[lid]) + + lab_max = idx[np.argmax(t_ints)] + label_pos.append((dividers[lab_max + 1] - dividers[lab_max]) / 2 + dividers[lab_max]) + + axs[1].imshow(raster[trial_idx], cmap='binary', origin='lower', + extent=[np.min(t_raster), np.max(t_raster), 0, len(trial_idx)], aspect='auto') + + width = raster_bin * 4 + for iD in range(len(dividers) - 1): + axs[1].fill_between([post_time + raster_bin / 2, post_time + raster_bin / 2 + width], + [dividers[iD + 1], dividers[iD + 1]], [dividers[iD], dividers[iD]], color=colors[iD]) + + axs[1].set_xlim([-1 * pre_time, post_time + raster_bin / 2 + width]) + secax = axs[1].secondary_yaxis('right') + + secax.set_yticks(label_pos) + secax.set_yticklabels(label, rotation=90, + rotation_mode='anchor', ha='center') + for ic, c in enumerate(np.array(colors)[lidx]): + secax.get_yticklabels()[ic].set_color(c) + + axs[0].axvline(0, *axs[0].get_ylim(), c='k', ls='--', zorder=10) # TODO this doesn't always work + axs[1].axvline(0, *axs[1].get_ylim(), c='k', ls='--', zorder=10) + + return fig, axs + + def plot_with_behavior(self): + + self.dlc = likelihood_threshold(self.dlc) + trial_idx, dividers = find_trial_ids(self.trials, sort='side') + feature_ext = get_speed(self.dlc, self.camera_times, self.label, feature='paw_r') + feature_new = get_speed(self.dlc, self.new_times, self.label, feature='paw_r') + + fig = plt.figure() + fig.set_size_inches(15, 9) + gs = gridspec.GridSpec(1, 5, figure=fig, width_ratios=[4, 1, 1, 1, 3], wspace=0.3, hspace=0.5) + gs0 = gridspec.GridSpecFromSubplotSpec(3, 1, subplot_spec=gs[0, 0]) + ax01 = fig.add_subplot(gs0[0, 0]) + ax02 = fig.add_subplot(gs0[1, 0]) + ax03 = fig.add_subplot(gs0[2, 0]) + gs1 = gridspec.GridSpecFromSubplotSpec(2, 1, subplot_spec=gs[0, 1], height_ratios=[1, 3]) + ax11 = fig.add_subplot(gs1[0, 0]) + ax12 = fig.add_subplot(gs1[1, 0]) + gs2 = gridspec.GridSpecFromSubplotSpec(2, 1, subplot_spec=gs[0, 2], height_ratios=[1, 3]) + ax21 = fig.add_subplot(gs2[0, 0]) + ax22 = fig.add_subplot(gs2[1, 0]) + gs3 = gridspec.GridSpecFromSubplotSpec(2, 1, subplot_spec=gs[0, 3], height_ratios=[1, 3]) + ax31 = fig.add_subplot(gs3[0, 0]) + ax32 = fig.add_subplot(gs3[1, 0]) + gs4 = gridspec.GridSpecFromSubplotSpec(2, 1, subplot_spec=gs[0, 4]) + ax41 = fig.add_subplot(gs4[0, 0]) + ax42 = fig.add_subplot(gs4[1, 0]) + + ax01.plot(self.t_shifts, self.shifts, label='shifts') + ax01.plot(self.t_shifts, self.shifts_filt, label='shifts_filt') + ax01.set_ylim(np.min(self.shifts_filt) - 10, np.max(self.shifts_filt) + 10) + ax01.legend() + ax01.set_ylabel('Frames') + ax01.set_xlabel('Time in session') + + xs = np.searchsorted(self.ttl_times, self.t_shifts) + ttl_diff = (self.times - self.camera_times)[xs] * self.camera_meta['fps'] + ax02.plot(self.t_shifts, ttl_diff, label='extracted - ttl') + ax02.set_ylim(np.min(ttl_diff) - 10, np.max(ttl_diff) + 10) + ax02.legend() + ax02.set_ylabel('Frames') + ax02.set_xlabel('Time in session') + + ax03.plot(self.camera_times, (self.camera_times - self.new_times) * self.camera_meta['fps'], + 'k', label='extracted - new') + ax03.legend() + ax03.set_ylim(-5, 5) + ax03.set_ylabel('Frames') + ax03.set_xlabel('Time in session') + + self.single_cluster_raster(self.wheel_timestamps, self.trials['firstMovement_times'].values, trial_idx, dividers, + ['g', 'y'], ['left', 'right'], weights=self.wheel_vel, fr=False, axs=[ax11, ax12]) + ax11.sharex(ax12) + ax11.set_ylabel('Wheel velocity') + ax11.set_title('Wheel') + ax12.set_xlabel('Time from first move') + + self.single_cluster_raster(self.camera_times, self.trials['firstMovement_times'].values, trial_idx, dividers, + ['g', 'y'], ['left', 'right'], weights=feature_ext, fr=False, axs=[ax21, ax22]) + ax21.sharex(ax22) + ax21.set_ylabel('Paw r velocity') + ax21.set_title('Extracted times') + ax22.set_xlabel('Time from first move') + + self.single_cluster_raster(self.new_times, self.trials['firstMovement_times'].values, trial_idx, dividers, ['g', 'y'], + ['left', 'right'], weights=feature_new, fr=False, axs=[ax31, ax32]) + ax31.sharex(ax32) + ax31.set_ylabel('Paw r velocity') + ax31.set_title('New times') + ax32.set_xlabel('Time from first move') + + ax41.imshow(self.frame_example[0]) + rect = matplotlib.patches.Rectangle((self.roi[1][1], self.roi[0][0]), self.roi[1][0] - self.roi[1][1], + self.roi[0][1] - self.roi[0][0], + linewidth=4, edgecolor='g', facecolor='none') + ax41.add_patch(rect) + + ax42.plot(self.all_me) + + return fig + + def plot_without_behavior(self): + + fig = plt.figure() + fig.set_size_inches(7, 7) + gs = gridspec.GridSpec(1, 2, figure=fig) + gs0 = gridspec.GridSpecFromSubplotSpec(3, 1, subplot_spec=gs[0, 0]) + ax01 = fig.add_subplot(gs0[0, 0]) + ax02 = fig.add_subplot(gs0[1, 0]) + ax03 = fig.add_subplot(gs0[2, 0]) + + gs1 = gridspec.GridSpecFromSubplotSpec(2, 1, subplot_spec=gs[0, 1]) + ax04 = fig.add_subplot(gs1[0, 0]) + ax05 = fig.add_subplot(gs1[1, 0]) + + ax01.plot(self.t_shifts, self.shifts, label='shifts') + ax01.plot(self.t_shifts, self.shifts_filt, label='shifts_filt') + ax01.set_ylim(np.min(self.shifts_filt) - 10, np.max(self.shifts_filt) + 10) + ax01.legend() + ax01.set_ylabel('Frames') + ax01.set_xlabel('Time in session') + + xs = np.searchsorted(self.ttl_times, self.t_shifts) + ttl_diff = (self.times - self.camera_times)[xs] * self.camera_meta['fps'] + ax02.plot(self.t_shifts, ttl_diff, label='extracted - ttl') + ax02.set_ylim(np.min(ttl_diff) - 10, np.max(ttl_diff) + 10) + ax02.legend() + ax02.set_ylabel('Frames') + ax02.set_xlabel('Time in session') + + ax03.plot(self.camera_times, (self.camera_times - self.new_times) * self.camera_meta['fps'], + 'k', label='extracted - new') + ax03.legend() + ax03.set_ylim(-5, 5) + ax03.set_ylabel('Frames') + ax03.set_xlabel('Time in session') + + ax04.imshow(self.frame_example[0]) + rect = matplotlib.patches.Rectangle((self.roi[1][1], self.roi[0][0]), self.roi[1][0] - self.roi[1][1], + self.roi[0][1] - self.roi[0][0], + linewidth=4, edgecolor='g', facecolor='none') + ax04.add_patch(rect) + + ax05.plot(self.all_me) + + return fig + + def process(self): + + # Compute the motion energy of the wheel for the whole video + wg = WindowGenerator(self.camera_meta['length'], 5000, 4) + out = Parallel(n_jobs=self.nprocess)(delayed(self.compute_motion_energy)(first, last, wg, iw) + for iw, (first, last) in enumerate(wg.firstlast)) + # Concatenate the motion energy into one big array + self.all_me = np.array([]) + for vals in out[:-1]: + self.all_me = np.r_[self.all_me, vals] + + toverlap = self.twin - 1 + all_me = np.r_[np.full((int(self.camera_meta['fps'] * toverlap)), np.nan), self.all_me] + to_app = self.times[0] - ((np.arange(int(self.camera_meta['fps'] * toverlap), ) + 1) / self.frate)[::-1] + times = np.r_[to_app, self.times] + + wg = WindowGenerator(all_me.size - 1, int(self.camera_meta['fps'] * self.twin), + int(self.camera_meta['fps'] * toverlap)) + + out = Parallel(n_jobs=self.nprocess)(delayed(self.compute_shifts)(times, all_me, first, last, iw, wg) + for iw, (first, last) in enumerate(wg.firstlast)) + + self.shifts = np.array([]) + self.t_shifts = np.array([]) + for vals in out[:-1]: + self.shifts = np.r_[self.shifts, vals[0]] + self.t_shifts = np.r_[self.t_shifts, vals[1]] + + idx = np.bitwise_and(self.t_shifts >= self.ttl_times[0], self.t_shifts < self.ttl_times[-1]) + self.shifts = self.shifts[idx] + self.t_shifts = self.t_shifts[idx] + shifts_filt = ndimage.percentile_filter(self.shifts, 80, 120) + shifts_filt = self.clean_shifts(shifts_filt, n=1) + self.shifts_filt = self.clean_shifts(shifts_filt, n=2) + + self.qc, self.qc_outcome = self.qc_shifts(self.shifts, self.shifts_filt) + + self.new_times = self.extract_times(self.shifts_filt, self.t_shifts) + + if self.upload: + fig = self.plot_with_behavior() if self.behavior else self.plot_without_behavior() + save_fig_path = Path(self.session_path.joinpath('snapshot', 'video', 'video_wheel_alignment.png')) + save_fig_path.parent.mkdir(exist_ok=True, parents=True) + fig.savefig(save_fig_path) + snp = ReportSnapshot(self.session_path, self.eid, content_type='session', one=self.one) + snp.outputs = [save_fig_path] + snp.register_images(widths=['orig']) + + return self.new_times diff --git a/ibllib/pipes/local_server.py b/ibllib/pipes/local_server.py index 895b0f20b..47f6322b5 100644 --- a/ibllib/pipes/local_server.py +++ b/ibllib/pipes/local_server.py @@ -10,7 +10,7 @@ from one.api import ONE from one.webclient import AlyxClient -from one.remote.globus import get_lab_from_endpoint_id +from one.remote.globus import get_lab_from_endpoint_id, get_local_endpoint_id from iblutil.util import setup_logger from ibllib.io.extractors.base import get_pipeline, get_task_protocol, get_session_extractor_type @@ -74,9 +74,10 @@ def report_health(one): status.update(_get_volume_usage('/mnt/s0/Data', 'raid')) status.update(_get_volume_usage('/', 'system')) - lab_names = get_lab_from_endpoint_id(alyx=one.alyx) - for ln in lab_names: - one.alyx.json_field_update(endpoint='labs', uuid=ln, field_name='json', data=status) + data_repos = one.alyx.rest('data-repository', 'list', globus_endpoint_id=get_local_endpoint_id()) + + for dr in data_repos: + one.alyx.json_field_update(endpoint='data-repository', uuid=dr['name'], field_name='json', data=status) def job_creator(root_path, one=None, dry=False, rerun=False, max_md5_size=None):