-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMEKF.cpp
410 lines (333 loc) · 14.7 KB
/
MEKF.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
#include "MEKF.h"
#include <cmath>
using namespace Eigen;
MEKF::MEKF() {
init();
}
MEKF::Parameters &MEKF::parameters() {
return _params;
}
Quaternionf &MEKF::get_q() {
return _q_estimate;
}
Vector3f &MEKF::get_velocity() {
return _vel_estimate;
}
LatLonAlt &MEKF::get_lla() {
return _lla_estimate;
}
Ref<const Vector3f> MEKF::get_gyro_bias() const {
return _kalman.x.block<3, 1>(IDX_GYRO_BIAS_X, 0);
}
Ref<const Vector3f> MEKF::get_acc_bias() const {
return _kalman.x.block<3, 1>(IDX_ACC_BIAS_X, 0);
}
Ref<const Vector3f> MEKF::get_mag_bias() const {
return _kalman.x.block<3, 1>(IDX_MAG_BIAS_X, 0);
}
float MEKF::get_alt_baro() const {
return _kalman.x(IDX_ALT_BARO);
}
Vector3f MEKF::get_var_att() const {
return {_kalman.P(IDX_ALPHA_X, IDX_ALPHA_X),
_kalman.P(IDX_ALPHA_Y, IDX_ALPHA_Y),
_kalman.P(IDX_ALPHA_Z, IDX_ALPHA_Z)};
}
Vector3f MEKF::get_var_acc_bias() const {
return {_kalman.P(IDX_ACC_BIAS_X, IDX_ACC_BIAS_X),
_kalman.P(IDX_ACC_BIAS_Y, IDX_ACC_BIAS_Y),
_kalman.P(IDX_ACC_BIAS_Z, IDX_ACC_BIAS_Z)};
}
float MEKF::get_var_h_pos() const {
return _kalman.P(IDX_DX, IDX_DX) + _kalman.P(IDX_DY, IDX_DY);
}
float MEKF::get_var_v_pos() const {
return _kalman.P(IDX_DZ, IDX_DZ);
}
float MEKF::get_var_h_vel() const {
return _kalman.P(IDX_DVX, IDX_DVX) + _kalman.P(IDX_DVY, IDX_DVY);
}
float MEKF::get_var_v_vel() const {
return _kalman.P(IDX_DVZ, IDX_DVZ);
}
float MEKF::get_var_alt_baro() const {
return _kalman.P(IDX_ALT_BARO, IDX_ALT_BARO);
}
void MEKF::init() {
_kalman.reset(IDX_DVX, 0, VAR_INIT_VEL);
_kalman.reset(IDX_DVY, 0, VAR_INIT_VEL);
_kalman.reset(IDX_DVZ, 0, VAR_INIT_VEL);
_kalman.reset(IDX_GYRO_BIAS_X, 0, VAR_INIT_GYRO_BIAS);
_kalman.reset(IDX_GYRO_BIAS_Y, 0, VAR_INIT_GYRO_BIAS);
_kalman.reset(IDX_GYRO_BIAS_Z, 0, VAR_INIT_GYRO_BIAS);
_kalman.reset(IDX_ACC_BIAS_X, 0, VAR_INIT_ACC_BIAS);
_kalman.reset(IDX_ACC_BIAS_Y, 0, VAR_INIT_ACC_BIAS);
_kalman.reset(IDX_ACC_BIAS_Z, 0, VAR_INIT_ACC_BIAS);
}
void MEKF::init_attitude(const Eigen::Quaternionf& q_init, float var_init_att) {
_q_estimate = q_init;
// Reset all orientation covariances
_kalman.P.row(IDX_ALPHA_X).setZero();
_kalman.P.row(IDX_ALPHA_Y).setZero();
_kalman.P.row(IDX_ALPHA_Z).setZero();
_kalman.P.col(IDX_ALPHA_X).setZero();
_kalman.P.col(IDX_ALPHA_Y).setZero();
_kalman.P.col(IDX_ALPHA_Z).setZero();
add_attitude_variance(var_init_att);
}
void MEKF::predict(const float dt, const Vector3f &gyro_raw, const Vector3f &accel_raw) {
_gyro = gyro_raw - get_gyro_bias();
_accel = accel_raw - get_acc_bias();
// Integrate angular velocity through forming a quaternion derivative
_q_estimate.x() += 0.5f * _gyro(X) * dt;
_q_estimate.y() += 0.5f * _gyro(Y) * dt;
_q_estimate.z() += 0.5f * _gyro(Z) * dt;
_q_estimate.normalize();
// Calculate Jacobian for the covariance matrix update
DdvDalpha = -_q_estimate.matrix() * skew_symmetric(_accel * dt);
_kalman.predict_cov(
[&](auto &&cov_x) {
predict_attitude_cov(cov_x, dt);
predict_position_velocity_cov(cov_x, dt);
},
[&](auto &P) {
predict_add_process_noise(P, dt);
});
predict_limit_cov();
}
void MEKF::correct_accel() {
const Quaternionf &q = _q_estimate;
// Jacobian matrix
Matrix<float, 3, IDX_SIZE> H_acc;
H_acc.setZero();
// gravity_body = q.conjugate().toRotationMatrix() * Vector3f(0, 0, ONE_G_F)
const Vector3f gravity_body{2 * ONE_G_F * (q.w() * q.y() - q.x() * q.z()),
2 * ONE_G_F * (q.w() * q.x() + q.y() * q.z()),
ONE_G_F * (1.0f - 2 * q.x() * q.x() - 2 * q.y() * q.y())};
H_acc.block<3, 3>(IDX_ALPHA_X, IDX_ALPHA_X) = skew_symmetric(gravity_body);
H_acc(0, IDX_ACC_BIAS_X) = 1.0f;
H_acc(1, IDX_ACC_BIAS_Y) = 1.0f;
H_acc(2, IDX_ACC_BIAS_Z) = 1.0f;
const Vector3f err = _accel - gravity_body;
const Matrix3f R_accel_obsv_cov = Matrix3f::Identity() * _params.var_acc;
_kalman.correct_block_err(IDX_ALPHA_X, err, H_acc, R_accel_obsv_cov);
}
void MEKF::correct_gyro_bias(const Observation3D &gyro_bias_obsv) {
for (int i = 0; i < 3; ++i) {
_kalman.correct(IDX_GYRO_BIAS_X + i, gyro_bias_obsv.value(i), gyro_bias_obsv.var);
}
}
void MEKF::correct_mag(const Observation3D &mag_obsv, float mag_decl_rad) {
const Quaternionf &q = _q_estimate;
// Estimate is north vector (1, 0, 0) in the vehicle body frame
// m_body = R_i^b * (1, 0, 0) = q.conjugate() * (1, 0, 0)
// With decl: m_body = R_i^b * (Rz(-decl) * (1, 0, 0)) = q.conjugate() * Rz(-decl) * (1, 0, 0)
/*const Vector3f mag_body_est{2 * q.w() * q.w() + 2 * q.x() * q.x(),
2 * q.x() * q.y() - 2 * q.w() * q.z(),
2 * q.w() * q.y() + 2 * q.x() * q.z()};*/
const Vector3f declined_north = AngleAxisf(-mag_decl_rad, Vector3f::UnitZ()) * Vector3f::UnitX();
const Vector3f mag_body_est = q.conjugate() * declined_north;
// Jacobian matrix
Matrix<float, 3, IDX_SIZE> H_mag;
H_mag.setZero();
H_mag.block<3, 3>(IDX_ALPHA_X, IDX_ALPHA_X) = skew_symmetric(mag_body_est);
H_mag(0, IDX_MAG_BIAS_X) = 1.0f;
H_mag(1, IDX_MAG_BIAS_Y) = 1.0f;
H_mag(2, IDX_MAG_BIAS_Z) = 1.0f;
const Vector3f err = mag_obsv.value - mag_body_est;
const Matrix3f R_mag = Matrix3f::Identity() * mag_obsv.var;
_kalman.correct_block_err(IDX_ALPHA_X, err, H_mag, R_mag);
}
void MEKF::correct_heading(const Observation &heading) {
// Known heading on ground
const Quaternionf &q = _q_estimate;
const Vector3f heading_vec(cosf(heading.value), -sinf(heading.value), 0);
// Estimate is north vector (1, 0, 0) in the vehicle body frame
// m_body = R_i^b * (1, 0, 0)
const Vector3f north_body_est{2 * q.w() * q.w() + 2 * q.x() * q.x(),
2 * q.x() * q.y() - 2 * q.w() * q.z(),
2 * q.w() * q.y() + 2 * q.x() * q.z()};
// Jacobian matrix
const Matrix<float, 3, 3> H_heading = skew_symmetric(north_body_est);
const Vector3f err = heading_vec - north_body_est;
const Matrix3f R_heading = Matrix3f::Identity() * heading.var;
_kalman.correct_block_err(IDX_ALPHA_X, err, H_heading, R_heading);
}
void MEKF::correct_att_vec(const Quaternionf &q_obsv_ts, const Observation3D &att_vec_obsv) {
// Apply attitude correction by GNSS attitude vector
const Quaternionf &q = q_obsv_ts;
// Estimate is vehicle's "y_body" in the inertial frame
// att_vec_est = R_b^i * (0, 1, 0)
const Vector3f att_vec_est{2 * q.x() * q.y() - 2 * q.w() * q.z(),
1.0f - 2 * q.x() * q.x() - 2 * q.z() * q.z(),
2 * q.w() * q.x() + 2 * q.y() * q.z()};
const Vector3f err = att_vec_obsv.value - att_vec_est;
// Jacobian matrix: [ -R_b^i(\hat{q}) * (0, 1, 0) \cross ]
const Matrix<float, 3, 3> H_gnss_att = -skew_symmetric(att_vec_est);
const Matrix<float, 3, 3> R = Matrix3f::Identity() * att_vec_obsv.var;
_kalman.correct_block_err(IDX_ALPHA_X, err, H_gnss_att, R);
}
void MEKF::correct_horizontal_position(const Observation3D &pos_h_err_obsv) {
const float var_xy = 0.5f * pos_h_err_obsv.var;
_kalman.correct(IDX_DX, pos_h_err_obsv.value(0), var_xy);
_kalman.correct(IDX_DY, pos_h_err_obsv.value(1), var_xy);
}
void MEKF::correct_vertical_position(const Observation &pos_v_err_obsv) {
_kalman.correct(IDX_DZ, pos_v_err_obsv.value, pos_v_err_obsv.var);
}
void MEKF::correct_baro(const Observation &baro_obsv) {
_kalman.correct(IDX_ALT_BARO, baro_obsv.value, baro_obsv.var);
}
void MEKF::correct_horizontal_velocity(const Observation3D &vel_h_err_obsv) {
const float var_xy = 0.5f * vel_h_err_obsv.var;
_kalman.correct(IDX_DVX, vel_h_err_obsv.value(0), var_xy);
_kalman.correct(IDX_DVY, vel_h_err_obsv.value(1), var_xy);
}
void MEKF::correct_vertical_velocity(const Observation &vel_v_err_obsv) {
_kalman.correct(IDX_DVZ, vel_v_err_obsv.value, vel_v_err_obsv.var);
}
template<typename T>
void MEKF::predict_attitude_cov(T &&cov_x, const float dt) {
Map<Vector3f> a(&_kalman.x(IDX_ALPHA_X));
cov_x(IDX_ALPHA_X) += dt * (/* 0 * cov_x(IDX_ALPHA_X) */ + _gyro(Z) * cov_x(IDX_ALPHA_Y) - _gyro(Y) * cov_x(IDX_ALPHA_Z)
- 1 * cov_x(IDX_GYRO_BIAS_X) + a.z() * cov_x(IDX_GYRO_BIAS_Y) - a.y() * cov_x(IDX_GYRO_BIAS_Z));
cov_x(IDX_ALPHA_Y) += dt * (-_gyro(Z) * cov_x(IDX_ALPHA_X) /* + 0 * cov_x(IDX_ALPHA_Y) */ + _gyro(X) * cov_x(IDX_ALPHA_Z)
- a.z() * cov_x(IDX_GYRO_BIAS_X) - 1 * cov_x(IDX_GYRO_BIAS_Y) + a.x() * cov_x(IDX_GYRO_BIAS_Z));
cov_x(IDX_ALPHA_Z) += dt * (_gyro(Y) * cov_x(IDX_ALPHA_X) - _gyro(X) * cov_x(IDX_ALPHA_Y) /* + 0 * cov_x(IDX_ALPHA_Z) */
+ a.y() * cov_x(IDX_GYRO_BIAS_X) - a.x() * cov_x(IDX_GYRO_BIAS_Y) - 1 * cov_x(IDX_GYRO_BIAS_Z));
}
template<typename T>
void MEKF::predict_position_velocity_cov(T &&cov_x, const float dt) {
const float half_dt = 0.5f * dt;
const Vector3f d_cov_dv = DdvDalpha * Vector3f(cov_x(IDX_ALPHA_X), cov_x(IDX_ALPHA_Y), cov_x(IDX_ALPHA_Z));
cov_x(IDX_DVX) += d_cov_dv(X);
cov_x(IDX_DVY) += d_cov_dv(Y);
cov_x(IDX_DVZ) += d_cov_dv(Z);
// Accelerometer Z bias
Vector3f acc_bias_body(cov_x(IDX_ACC_BIAS_X), cov_x(IDX_ACC_BIAS_Y), cov_x(IDX_ACC_BIAS_Z));
Vector3f acc_bias_ned = _q_estimate * acc_bias_body;
// Velocity and position covariance prediction
for (int axis = 0; axis < 3; ++axis) {
float dv = -acc_bias_ned(axis) * dt;
float dp = cov_x(IDX_DVX + axis) * dt + dv * half_dt;
if (axis == 2) {
cov_x(IDX_ALT_BARO) -= dp;
}
cov_x(IDX_DVX + axis) += dv;
cov_x(IDX_DX + axis) += dp;
}
}
void MEKF::predict_add_process_noise(Matrix<float, IDX_SIZE, IDX_SIZE> &P, const float dt) {
const float dt2_2 = dt * dt * 0.5f;
const float dt3_3 = dt * dt * dt * 0.3333f;
// alpha row
const float var_alpha = _params.var_gyro * dt + _params.var_gyro_bias * dt3_3;
add_attitude_variance(var_alpha);
const float covar_alpha_gb = -_params.var_gyro_bias * dt2_2;
P(IDX_ALPHA_X, IDX_GYRO_BIAS_X) += covar_alpha_gb;
P(IDX_ALPHA_Y, IDX_GYRO_BIAS_Y) += covar_alpha_gb;
P(IDX_ALPHA_Z, IDX_GYRO_BIAS_Z) += covar_alpha_gb;
// dv row
const float var_dv = _params.var_acc * dt + _params.var_acc_bias * dt3_3;
P(IDX_DVX, IDX_DVX) += var_dv;
P(IDX_DVY, IDX_DVY) += var_dv;
P(IDX_DVZ, IDX_DVZ) += var_dv;
const float covar_dv_dp = _params.var_acc * dt2_2;
P(IDX_DVX, IDX_DX) += covar_dv_dp;
P(IDX_DVY, IDX_DY) += covar_dv_dp;
P(IDX_DVZ, IDX_DZ) += covar_dv_dp;
const float covar_dv_acc_bias = -_params.var_acc_bias * dt2_2;
P(IDX_DVX, IDX_ACC_BIAS_X) += covar_dv_acc_bias;
P(IDX_DVY, IDX_ACC_BIAS_Y) += covar_dv_acc_bias;
P(IDX_DVZ, IDX_ACC_BIAS_Z) += covar_dv_acc_bias;
// dx row
P(IDX_DX, IDX_DVX) += covar_dv_dp;
P(IDX_DY, IDX_DVY) += covar_dv_dp;
P(IDX_DZ, IDX_DVZ) += covar_dv_dp;
const float covar_dx_acc_bias = -_params.var_acc_bias * dt3_3 * 0.5f;
P(IDX_DX, IDX_ACC_BIAS_X) += covar_dx_acc_bias;
P(IDX_DY, IDX_ACC_BIAS_Y) += covar_dx_acc_bias;
P(IDX_DZ, IDX_ACC_BIAS_Z) += covar_dx_acc_bias;
// Gyro bias row
P(IDX_GYRO_BIAS_X, IDX_ALPHA_X) += covar_alpha_gb;
P(IDX_GYRO_BIAS_Y, IDX_ALPHA_Y) += covar_alpha_gb;
P(IDX_GYRO_BIAS_Z, IDX_ALPHA_Z) += covar_alpha_gb;
const float var_gyro_bias = _params.var_gyro_bias * dt;
P(IDX_GYRO_BIAS_X, IDX_GYRO_BIAS_X) += var_gyro_bias;
P(IDX_GYRO_BIAS_Y, IDX_GYRO_BIAS_Y) += var_gyro_bias;
P(IDX_GYRO_BIAS_Z, IDX_GYRO_BIAS_Z) += var_gyro_bias;
// Accelerometer bias row
P(IDX_ACC_BIAS_X, IDX_DVX) += covar_dv_acc_bias;
P(IDX_ACC_BIAS_Y, IDX_DVY) += covar_dv_acc_bias;
P(IDX_ACC_BIAS_Z, IDX_DVZ) += covar_dv_acc_bias;
P(IDX_ACC_BIAS_X, IDX_DX) += covar_dx_acc_bias;
P(IDX_ACC_BIAS_Y, IDX_DY) += covar_dx_acc_bias;
P(IDX_ACC_BIAS_Z, IDX_DZ) += covar_dx_acc_bias;
const float var_accel_bias = _params.var_acc_bias * dt;
P(IDX_ACC_BIAS_X, IDX_ACC_BIAS_X) += var_accel_bias;
P(IDX_ACC_BIAS_Y, IDX_ACC_BIAS_Y) += var_accel_bias;
P(IDX_ACC_BIAS_Z, IDX_ACC_BIAS_Z) += var_accel_bias;
// Magnetometer bias row
const float var_mag_bias = _params.var_mag_bias * dt;
P(IDX_MAG_BIAS_X, IDX_MAG_BIAS_X) += var_mag_bias;
P(IDX_MAG_BIAS_Y, IDX_MAG_BIAS_Y) += var_mag_bias;
P(IDX_MAG_BIAS_Z, IDX_MAG_BIAS_Z) += var_mag_bias;
P(IDX_ALT_BARO, IDX_ALT_BARO) += covar_dx_acc_bias + _params.var_baro_bias * dt;
}
void MEKF::predict_limit_cov() {
// Limit accel bias
_kalman.x(IDX_ACC_BIAS_X) = constrain(_kalman.x(IDX_ACC_BIAS_X), -LIMIT_ACC_BIAS, LIMIT_ACC_BIAS);
_kalman.x(IDX_ACC_BIAS_Y) = constrain(_kalman.x(IDX_ACC_BIAS_Y), -LIMIT_ACC_BIAS, LIMIT_ACC_BIAS);
_kalman.x(IDX_ACC_BIAS_Z) = constrain(_kalman.x(IDX_ACC_BIAS_Z), -LIMIT_ACC_BIAS, LIMIT_ACC_BIAS);
// Limit accel bias covariance
for (int axis = 0; axis < 3; ++axis) {
float k = _kalman.P(IDX_ACC_BIAS_X + axis, IDX_ACC_BIAS_X + axis) / VAR_LIMIT_ACC_BIAS;
if (k > 1.0f) {
k = sqrtf(k);
_kalman.P.col(IDX_ACC_BIAS_X + axis) /= k;
_kalman.P.row(IDX_ACC_BIAS_X + axis) /= k;
}
}
// Limit gyro bias
for (int axis = 0; axis < 3; ++axis) {
_kalman.x(IDX_GYRO_BIAS_X + axis) = constrain(_kalman.x(IDX_GYRO_BIAS_X + axis),
-LIMIT_GYRO_BIAS, LIMIT_GYRO_BIAS);
}
}
void MEKF::update_aposteriori() {
// Update integrated estimates
_q_estimate *= Quaternionf(1.0f,
_kalman.x(IDX_ALPHA_X) * 0.5f,
_kalman.x(IDX_ALPHA_Y) * 0.5f,
_kalman.x(IDX_ALPHA_Z) * 0.5f);
_q_estimate.normalize();
_kalman.x.block<3, 1>(IDX_ALPHA_X, 0).setZero();
_lla_estimate += _kalman.x.block<3, 1>(IDX_DX, 0);
_kalman.x.block<3, 1>(IDX_DX, 0).setZero();
_vel_estimate += _kalman.x.block<3, 1>(IDX_DVX, 0);
_kalman.x.block<3, 1>(IDX_DVX, 0).setZero();
}
Matrix3f MEKF::skew_symmetric(const Vector3f &v) {
Matrix3f skew;
skew << 0, -v.z(), v.y(),
v.z(), 0, -v.x(),
-v.y(), v.x(), 0;
return skew;
}
template <typename T>
T MEKF::constrain(T value, T min, T max)
{
if (value < min) {
return min;
} else if (value > max) {
return max;
} else {
return value;
}
}
void MEKF::add_attitude_variance(float v) {
auto &P = _kalman.P;
P(IDX_ALPHA_X, IDX_ALPHA_X) += v;
P(IDX_ALPHA_Y, IDX_ALPHA_Y) += v;
P(IDX_ALPHA_Z, IDX_ALPHA_Z) += v;
}