-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvit_emoreccom_full_augment.yaml
53 lines (45 loc) · 1.42 KB
/
vit_emoreccom_full_augment.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# @package _global_
# to execute this experiment run:
# python run.py experiment=example_simple.yaml
defaults:
- override /trainer: default.yaml
- override /model: vit_classifier_model.yaml
- override /datamodule: emoreccom_datamodule.yaml
- override /callbacks: default.yaml
- override /logger: tensorboard.yaml
# all parameters below will be merged with parameters from default configurations set above
# this allows you to overwrite only specified parameters
seed: 12345
trainer:
gpus: 1
min_epochs: 1
max_epochs: 100
gradient_clip_val: 0.5
model:
feature_extractor_alias: google/vit-base-patch16-224
model_alias: google/vit-base-patch16-224-in21k
num_classes: 8
# n_train_steps = int(len(train_dataset) / config.batch_size * num_epoch)
num_train_steps: 7987 # 5112 / 64 * 100
lr: 0.00003
weight_decay: 0.0005
use_scheduler: True
scheduler_num_warmup_steps: 0
# check DatasetOutput for further information
dataset_output: 4
datamodule:
data_dir: /userfiles/comics_grp/datasets/EmoRecCom/
modality: 2
batch_size: 64
train_val_test_split: [ 5112, 500, 500 ]
num_workers: 0
pin_memory: False
use_label_transform: False
# 0 for no augmentation, 1 for slight, 2 for medium and 3 for full
# check datamodule > transform_datamodule.py for details
image_augment_strength: 3
callbacks:
model_checkpoint:
monitor: "val/roc_auc_score"
early_stopping:
monitor: "val/roc_auc_score"