From c820df0c869949398ec243a55f9c2f4aa8256c74 Mon Sep 17 00:00:00 2001 From: Tylar Date: Thu, 23 May 2024 13:18:03 -0400 Subject: [PATCH] add author-wordcloud & topic-treemap (#76) * + author wordcloud * fix duplicates in author wordcloud * + treemap of topics --- notebooks/mbon_citation_visualizations.ipynb | 141 ++++++++++++++++--- 1 file changed, 118 insertions(+), 23 deletions(-) diff --git a/notebooks/mbon_citation_visualizations.ipynb b/notebooks/mbon_citation_visualizations.ipynb index 44394c6..dddc394 100644 --- a/notebooks/mbon_citation_visualizations.ipynb +++ b/notebooks/mbon_citation_visualizations.ipynb @@ -2,8 +2,8 @@ "cells": [ { "cell_type": "code", - "execution_count": 2, - "id": "a9305031", + "execution_count": 1, + "id": "7e11d568", "metadata": {}, "outputs": [], "source": [ @@ -65,8 +65,8 @@ }, { "cell_type": "code", - "execution_count": 3, - "id": "e2081e68", + "execution_count": 2, + "id": "4b57c943", "metadata": {}, "outputs": [], "source": [ @@ -76,8 +76,8 @@ }, { "cell_type": "code", - "execution_count": 4, - "id": "1a9f2cdc", + "execution_count": 3, + "id": "75bf4066", "metadata": {}, "outputs": [], "source": [ @@ -111,15 +111,15 @@ }, { "cell_type": "code", - "execution_count": 6, - "id": "4f92604d", + "execution_count": 4, + "id": "0f637422", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_1278477/3408327477.py:11: UserWarning: Converting to PeriodArray/Index representation will drop timezone information.\n", + "/tmp/ipykernel_1291783/3408327477.py:11: UserWarning: Converting to PeriodArray/Index representation will drop timezone information.\n", " df['year_month'] = df['literature_published'].dt.to_period('M')\n" ] }, @@ -146,15 +146,15 @@ }, { "cell_type": "code", - "execution_count": 7, - "id": "2d53fdbb", + "execution_count": 5, + "id": "f11c2925", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_1278477/3408327477.py:11: UserWarning: Converting to PeriodArray/Index representation will drop timezone information.\n", + "/tmp/ipykernel_1291783/3408327477.py:11: UserWarning: Converting to PeriodArray/Index representation will drop timezone information.\n", " df['year_month'] = df['literature_published'].dt.to_period('M')\n" ] }, @@ -180,8 +180,48 @@ }, { "cell_type": "code", - "execution_count": 9, - "id": "eaf32131", + "execution_count": 13, + "id": "d34056ec", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+oAAAKSCAYAAABFmCHKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACYcUlEQVR4nOzddXhUR8PG4Wc37u4JcSMhuLsVKC2lRUoV6n3rpf3qRl1f6u1bg7oBhbYUd/fgEiTBCQRIIC77/ZFmYdkNBCsL/d3XtVfZmTkzc84GmmfPOXMMJpPJJAAAAAAAYBeMF3oCAAAAAADgGII6AAAAAAB2hKAOAAAAAIAdIagDAAAAAGBHCOoAAAAAANgRgjoAAAAAAHaEoA4AAAAAgB0hqAMAAAAAYEcI6gAAAAAA2BGCOgDgX2XJkiVq06aNPDw8ZDAYlJmZeVb9GQwGvfDCC+dkbjg/hgwZopiYmAs9DQAA6oygDgB2xGAw1Ok1c+bMCz3Vi1J5ebkGDBiggwcPavjw4fr2228VHR1ts+3MmTNlMBg0atSo0xpj/vz5euGFF3T48OFzMOMz98MPP+jdd9+9oHM4Uc0xrcsLAIB/M8cLPQEAwDHffvutxftvvvlGU6ZMsSpPTU39J6d1ydiyZYtycnL0+eef6/bbbz8nfRYXF8vR8dj/TufPn69hw4ZpyJAh8vX1PSdjnIkffvhBa9as0UMPPXTB5nCi1NRUq5/lJ598Up6ennr66afP27iff/65qqqqzlv/AACcawR1ALAjN954o8X7hQsXasqUKVblJyoqKpK7u/v5nNolITc3V5LOaYB2dXU9Z32djL18xmczj5CQEKuf5ddff12BgYGn/Bk/G05OTuetbwAAzgcufQeAi0ynTp2Unp6uZcuWqUOHDnJ3d9dTTz0lSSotLdXzzz+vhIQEubi4KCoqSo899phKS0ut+vnuu+/UtGlTubm5yd/fX4MGDdKOHTtsjrVq1Sp17NhR7u7uSkhIMF8OPmvWLLVs2VJubm5KTk7W1KlTLbbPycnRPffco+TkZLm5uSkgIEADBgxQdna2RbuRI0fKYDBo9uzZuuuuuxQQECBvb2/dfPPNOnToUJ2Oy/Tp09W+fXt5eHjI19dXV111ldavX2+uHzJkiDp27ChJGjBggAwGgzp16lSnvk/m+HvUX3jhBf3f//2fJCk2NtZ8Gffx+3s6x93WZzxu3Dj17t1b4eHhcnFxUXx8vF566SVVVlZabD9+/Hjl5OSY51Bzj3bNsT7xM6i5LP342yrO1c/a6dq6dasGDBggf39/ubu7q1WrVho/frzN+f7888966qmnFBoaKg8PD/Xp08fqeNq6R72qqkrvvfeeGjRoIFdXVwUFBalnz55aunSpuc2UKVPUrl07+fr6ytPTU8nJyeb9BwDgfOKMOgBchPLy8tSrVy8NGjRIN954o0JCQlRVVaU+ffpo7ty5uvPOO5WamqrVq1dr+PDh2rRpk8aOHWve/pVXXtGzzz6rgQMH6vbbb9f+/fv1wQcfqEOHDlqxYoXFGedDhw7piiuu0KBBgzRgwAB98sknGjRokL7//ns99NBDuvvuu3X99dfrrbfeUv/+/bVjxw55eXlJql64bf78+Ro0aJAiIyOVnZ2tTz75RJ06ddK6deuszszed9998vX11QsvvKCNGzfqk08+UU5OjjmU1Wbq1Knq1auX4uLi9MILL6i4uFgffPCB2rZtq+XLlysmJkZ33XWXIiIi9Oqrr+qBBx5Q8+bNFRISck4/l2uuuUabNm3Sjz/+qOHDhyswMFCSFBQUdNrH3dZnLFUHbU9PTw0dOlSenp6aPn26nnvuORUUFOitt96SJD399NPKz8/Xzp07NXz4cEmSp6fnGe3T2f6sna59+/apTZs2Kioq0gMPPKCAgAB9/fXX6tOnj0aNGqWrr77aov0rr7wig8Ggxx9/XLm5uXr33XfVrVs3ZWZmys3NrdZxbrvtNo0cOVK9evXS7bffroqKCs2ZM0cLFy5Us2bNtHbtWl1xxRXKyMjQiy++KBcXF23evFnz5s07430DAKDOTAAAu3XvvfeaTvynumPHjiZJpk8//dSi/NtvvzUZjUbTnDlzLMo//fRTkyTTvHnzTCaTyZSdnW1ycHAwvfLKKxbtVq9ebXJ0dLQorxnrhx9+MJdt2LDBJMlkNBpNCxcuNJdPmjTJJMk0YsQIc1lRUZHVPi1YsMAkyfTNN9+Yy0aMGGGSZGratKmprKzMXP7mm2+aJJnGjRtX6zEymUymRo0amYKDg015eXnmspUrV5qMRqPp5ptvNpfNmDHDJMn066+/nrS/02kryfT888+b37/11lsmSaZt27ZZtDuT437iZ2wy2T6md911l8nd3d1UUlJiLuvdu7cpOjraqm3NsT5xfjX7O2PGjFPOo64/a3WRlpZm6tixo/n9Qw89ZJJk0feRI0dMsbGxppiYGFNlZaXFfCMiIkwFBQXmtr/88otJkum9994zlw0ePNjiWEyfPt0kyfTAAw9YzaeqqspkMplMw4cPN0ky7d+/v877AgDAucKl7wBwEXJxcdEtt9xiUfbrr78qNTVVKSkpOnDggPnVpUsXSdKMGTMkSWPGjFFVVZUGDhxo0S40NFSJiYnmdjU8PT01aNAg8/vk5GT5+voqNTVVLVu2NJfX/Hnr1q3msuPPaJaXlysvL08JCQny9fXV8uXLrfbrzjvvtLif+D//+Y8cHR31119/1Xos9uzZo8zMTA0ZMkT+/v7m8oyMDHXv3v2k2/6TTve42/qMJctjeuTIER04cEDt27dXUVGRNmzYcM7nfTY/a2fir7/+UosWLdSuXTtzmaenp+68805lZ2dr3bp1Fu1vvvlm8xUcktS/f3+FhYWd9HMfPXq0DAaDnn/+eau6mis3aq5uGDduHAvRAQD+cVz6DgAXoYiICDk7O1uUZWVlaf369ebLrE9Us5BaVlaWTCaTEhMTbbY7ceGtyMhIq8vOfXx8FBUVZVUmyeKe8uLiYr322msaMWKEdu3aJZPJZK7Lz8+3GvvEOXl6eiosLMzqfurj5eTkSKr+AuFEqampmjRpkgoLC+Xh4VFrH/+E0z3utj5jSVq7dq2eeeYZTZ8+XQUFBRZ1to7p2Tqbn7UzkZOTY/EFUI2aJx3k5OQoPT3dXH7i8TQYDEpISDjpz8yWLVsUHh5u8cXOia699lp98cUXuv322/XEE0+oa9euuuaaa9S/f38ZjZznAACcXwR1ALgI2br3tqqqSg0aNNB///tfm9vUBOuqqioZDAZNmDBBDg4OVu1OvJfZVpuTlR8fxu+//36NGDFCDz30kFq3bi0fHx8ZDAYNGjToX3eW8nSPu63P+PDhw+rYsaO8vb314osvKj4+Xq6urlq+fLkef/zxOh3T2u71P34xulPNo64/axczNzc3zZ49WzNmzND48eM1ceJE/fzzz+rSpYsmT55c688/AADnAkEdAC4R8fHxWrlypbp27XrShdfi4+NlMpkUGxurpKSk8zqnUaNGafDgwXrnnXfMZSUlJTp8+LDN9llZWercubP5/dGjR7Vnzx5dfvnltY4RHR0tSdq4caNV3YYNGxQYGPiPnk2v7difi+M+c+ZM5eXlacyYMerQoYO5fNu2bXWeh5+fnyRZfQY1VybURV1/1s5EdHR0rZ9lTf3xsrKyLN6bTCZt3rxZGRkZtY4RHx+vSZMm6eDBgyc9q240GtW1a1d17dpV//3vf/Xqq6/q6aef1owZM9StW7fT2S0AAE4L124BwCVi4MCB2rVrlz7//HOruuLiYhUWFkqqXpncwcFBw4YNszj7LVWHnLy8vHM2JwcHB6sxPvjgg1rP3n722WcqLy83v//kk09UUVGhXr161TpGWFiYGjVqpK+//toifK5Zs0aTJ08+acg/H2q+FDgxCJ+L415zFvf47cvKyvTxxx/bnIetS+Hj4+MlSbNnzzaXVVZW6rPPPjvl+DXq+rN2Ji6//HItXrxYCxYsMJcVFhbqs88+U0xMjOrXr2/R/ptvvtGRI0fM70eNGqU9e/ac9GemX79+MplMGjZsmFVdzbE9ePCgVV2jRo0k6Zw8gg4AgJPhjDoAXCJuuukm/fLLL7r77rs1Y8YMtW3bVpWVldqwYYN++eUXTZo0Sc2aNVN8fLxefvllPfnkk8rOzlbfvn3l5eWlbdu26bffftOdd96pRx999JzM6YorrtC3334rHx8f1a9fXwsWLNDUqVMVEBBgs31ZWZm6du2qgQMHauPGjfr444/Vrl079enT56TjvPXWW+rVq5dat26t2267zfx4Nh8fH/Mzzs/U6NGjbS7SNnjwYJuXeDdt2lRS9SPSBg0aJCcnJ1155ZXn5Li3adNGfn5+Gjx4sB544AEZDAZ9++23VsG/Zh4///yzhg4dqubNm8vT01NXXnml0tLS1KpVKz355JPmM8o//fSTKioq6nxM6vqzdiaeeOIJ/fjjj+rVq5ceeOAB+fv76+uvv9a2bds0evRoq/vD/f391a5dO91yyy3at2+f3n33XSUkJOiOO+6odYzOnTvrpptu0vvvv6+srCz17NlTVVVVmjNnjjp37qz77rtPL774ombPnq3evXsrOjpaubm5+vjjjxUZGWmx0B0AAOfFP7/QPACgrmp7PFtaWprN9mVlZaY33njDlJaWZnJxcTH5+fmZmjZtaho2bJgpPz/fou3o0aNN7dq1M3l4eJg8PDxMKSkppnvvvde0cePGU44VHR1t6t27t1W5JNO9995rfn/o0CHTLbfcYgoMDDR5enqaevToYdqwYYMpOjraNHjwYHO7mkeGzZo1y3TnnXea/Pz8TJ6enqYbbrjB4pFrJzN16lRT27ZtTW5ubiZvb2/TlVdeaVq3bp1FmzN5PFttr5rHh+mEx7OZTCbTSy+9ZIqIiDAZjUarR6GdzXE3mUymefPmmVq1amVyc3MzhYeHmx577DHzo/GOf7Ta0aNHTddff73J19fXJMni8WRbtmwxdevWzeTi4mIKCQkxPfXUU6YpU6bYfDzbufhZO5kTH89WM7/+/fubfH19Ta6urqYWLVqY/vzzT4s2NZ/Pjz/+aHryySdNwcHBJjc3N1Pv3r1NOTk5Fm1PfDybyWQyVVRUmN566y1TSkqKydnZ2RQUFGTq1auXadmyZSaTyWSaNm2a6aqrrjKFh4ebnJ2dTeHh4abrrrvOtGnTpjrvGwAAZ8pgMtn4Gh4AgH/QyJEjdcstt2jJkiVnfCYW/y4zZ85U586d9euvv6p///4XejoAAJxT3KMOAAAAAIAdIagDAAAAAGBHCOoAAAAAANgR7lEHAAAAAMCOcEYdAAAAAAA7QlAHAAAAAMCOENQBAAAAALAjjnVtODTzjfM5DwDAv1RuoeeFngJwxuJ98i70FICL0tYx8Rd6Cnav+MhhrZk9TruyMlVUcEiuHt7yC41WSuseCotL12/DH1JKq57yC62nqSNfPWlf3YY8pcLDB7R04ne69snPJEnfPX/jSbe5cdh3kqTfhj+kwsMHrOobdRuo9PZ9dPTQfo1992G5eHir74PvyMnFzdxm/CdPKSyjqdJ79Dvl/h7Ny9WaCb8qd8t6lRUVysXDU36RsZo26nulpKSY282YMUNvvfWWFi1apOLiYsXExKhXr14aOnSoIiIiNHPmTHXu3FmHDh2Sr6+v+b0te/bsUWhoqF544QUNGzZMd911lz799FNzfWZmpho3bqxt27YpJibGXD569Gh98MEHWrFihSorKxUXF6f+/fvrvvvuk7+/v0aOHKlbbrnFajwXFxeVlJSc8lhIpxHUAQAAAADn39FD+zXpyxfl7OquJpddJ9/gKFVVVWr35lVaMv5r9bn/LXPboKgk9Xv0Q/P7pRO+VXlpsVr3vdNc5uzmaRW2j9/GPO7hA5r2zeuKa9Teojyjcz8lNrUMu04urhbvK0qLtW7eX2rY5dSh/ERVlRWa/b/X5RUcprZDHpKrl6+K8w9qz4aVOnz4sLnd//73P91zzz0aPHiwRo8erZiYGG3fvl3ffPON3nnnHf33v/+tdYyNGzfK29vboiw4ONj8Z1dXV3355Zd65JFHlJiYWGs/Tz/9tN544w09/PDDevXVVxUeHq6srCx9+umn+vbbb/Xggw9Kkry9vbVx40aLbQ0GQ52PCUEdAAAAAOzI4vEjZTBIve4cJkfnY4HYNzhSCY07WrR1cHSUm5fvsfdOzqqsrLAos+XE+oqyUi3+8ysFhMeqWU/Ls+1OLm6n7C+55WVav2CCklt0k6unz0nbnih/7y4dzctVx7ufkod/oCTJwz9QgbFJatWqlSRp586deuCBB/TAAw9o+PDh5m1jYmLUoUMHi0BvS3BwsHx9a9+H5ORkBQcH6+mnn9Yvv/xis83ixYv16quv6t133zUH8po5dO/e3WIOBoNBoaGhp9jz2nGPOgAAAADYidKio9q9eZWSmne3COk1nN08zsu4C8Z+prKSYrUf+ICMDg6nvX1Mg9by8g/RqlljT3tbF08vGQwG7Vy1WFVVVTbb/PrrryorK9Njjz1ms/5kIbyuXn/9dY0ePVpLly61Wf/999/L09NT99xzz3mbQw3OqAMAAACAnThycJ9kMsk7KOwfG3PN7N+1KytTPW57Tq4eXlb1K6b8pJXTf7Uo63Lj/yk4OuW4EoMad79WM394R6mte8rLP6TO47v7+KtR35u1avxPWjt5jPyj4hSUkKroJm3NbbKysuTt7a2wsDM7LpGRkRbvo6OjtXbtWouyJk2aaODAgXr88cc1bdo0qz6ysrIUFxcnJyenU46Xn58vT0/LdXjat2+vCRMm1Gm+BHUAAAAAsBumf3S0XZsytXLGKLXrf6/8QqNttqnftrfiT7hv3c3b36pdeEKGguola+X06v5OR2K77opp1k77t6xXXs5m7Vy5WBum/q4pndLVvXt3mUym07rH+0Rz5syRl9exLyFqC9svv/yyUlNTNXnyZIt72CXJZKr7Z+Pl5aXly5dblLm5udXS2hqXvgMAAACAnfDyD5UMBhXs33Pexyo4sEdzR3+stHZXKjqtZa3tXNy95BUQavFydHK22bZxt2uVs2ahDu7JPu35OLm6KTytiRpcPlCXPfKqAuOS9fLLL0uSkpKSlJ+frz17zuy4xMbGKiEhwfyKjrb9pUR8fLzuuOMOPfHEE1bBPCkpSVu3blV5efkpxzMajRbjJSQkKCIios7zJagDAAAAgJ1wcfdUeHwDbVoyRRVl1o/yKisuPCfjlJUUaeaPwxUcnayGXfqfkz4lKTAyXlGpzbViys9n1Y/BYJBXcLgKC6v3t3///nJ2dtabb75ps/2pFpM7Hc8995w2bdqkn376yaL8+uuv19GjR/Xxxx+f9zlw6TsAAAAA2JHmvYdo0pfDNOGz59WwSz/5htSTqapSe7as0aYl09Tnftthta5MJpPmjf5EleWlatrjBpUczbdq4+LhLaOx+rxueWmxio8ctqh3cHKWs6u7zf4bdR2gPz56QkajUXW5o/zQrhytnTRa0U3byTskQkZHB+3fskHZi2fpuWeeliRFRUVp+PDhuu+++1RQUKCbb75ZMTEx2rlzp7755ht5enrqnXfeqXWM3Nxcq2eYBwQE2LwEPiQkREOHDtVbb71lUd6yZUs99thjeuSRR7Rr1y5dffXVCg8P1+bNm/Xpp5+qXbt25tXgTSaT9u7da9V3cHCw+bieDEEdAAAAAOyIl3+wLr/7Za2Z/buWTfpBxUcOy9XDS/5hsWpxxZCz7r8wP0+7Nq2QJP3+/qM22/R9aLg8/YIkSatmjNaqGaMt6hObdVHLK2+1ua13YJjiG3fQ5mUz6jQfdx9/efgHat3kMSo8VP28dw//IKX16Kenn37a3O6ee+5RUlKS3n77bV199dUqLi5WTEyMrrjiCg0dOvSkYyQnJ1uVLViwwPz4txM9+uij+uSTT6zC/RtvvKGmTZvqo48+0qeffqqqqirFx8erf//+Gjx4sLldQUGBzYXv9uzZU6fHthlMdbwjfmjmG3VpBgDAackt9Dx1I8BOxfvkXegpABelrWPiL/QU8A8pO8v/zf889IZzM5GLDGfUAQAAAADnxUvXf3+WPRDUAQAAAAA4p5YuPKg7blhaa/2KLZf9g7O5OBDUAQAAAADnTXpDH42d2vZCT+OiQlAHAAAAAJw3rm4Oio71uNDTuKjwHHUAAAAAAOwIZ9QBAAAAXLTm//Y/bc2cI0kyGB3k4uYh35B6imnQWvGN2stwwjOrp33zhvZuXaMed7ygwIh4HT20X2PfffikY7Tue6fiG3dQRXmZxrxzvwwGg6555AM5OFo/g7s2vw1/SIWHqx895uDkIu/AUKW376PotJbmNqfq/1R9rJwxWqtn/mY1tndgmPrcX/1M8MkjXlZu9gZJktHRSR4+AYpv1EFp7a+UwWCo8/7g/CKoAwAAALiohSdkqHXfO2UyVan4aL72bF6lpRO+1fZ1i9XpuqEyOjhIkgoPH9D+HVlKatFdW5bPVmBEvNx9AtTv0Q/Nfa2b/5d2b16lbjc/YS5zcnWXJG1ft1g+QRGSpB0blikm3fYzuGuT0bmfEpt2VnlpsdbN/0tzfv1Q7l5+CqqXVOf+T9WHT3Ckxdyl6i8wjpfQtLMadu6nysoK7du2Vgt//0rOru5KatHttPYH5w+XvgMAAAC4qBkdneTm5St3b38FhMcqvcNV6nTdw9qdtVJbMmeb221ZMVsRSY2U1LybstcsUEV5mYxGo9y8fM0vR2cX6zIn5+rtl89SbEZbxWa01ZblM097nk4ubnLz8pV3YJha9B4iB0dn7dy44tj86tD/qfo4ce5uXr5y9fCy6MPRyVluXr7y9A1UfOOO8guJ0p6ta057f3D+ENQBAAAAXHJC49LkF1pPO9ZXPxbMZDJpS+ZsxTZsK5+gcHn5h2j7usV17u/IwX3av3OzotNbKTqtpXJzNuro35ehnwmjg4OMDg6qqqw44/5P7ON0mUwm5eZsUP6BPTI6cLG1PeHTAAAAAHBJ8g4M1+F92yVJe7euUUV5mcLjMyRJsRlttXn5TMU1bFenvrYsn6WIhAy5uFWvXh6WkKEtK2apYed+pz2vyooKrZ//l8pLihQSV/+M+rfVhyQd3rdDP71ym0Xb2Iy2annlreb3m5ZM1eblM1VVWaGqyko5ODoppSXPMrcnBHUAAAAAlyaTSVL1Ammbl89STFpL8/3qMQ1aa/nkH3Xk4D55+YectJuqqiptXTlHzXrdZC6LzWir5ZN/UEbHq60WrKvNiik/aeX0X1VZUS5HZ1c17natIpMan1b/tfVRwzswTJ2uG2oxrpOLm8X7mAZt1KDDVSotKdSqGWMUFJVovscd9oGgDgAAAOCSlH9gtzz9glRadFQ7NiyTqbJCm5ZOM9ebqqq0ZfksNeo28KT97Nm8SkUFhzTn1w8tyk1VVdq7ba3C4hvUaT712/ZWfKP2cnR2launj3mV9dPpv7Y+ahgdHOUVEHrSeTi7ussrIFRektoPuF/j3n9EgZEJCotPr9N+4PwjqAMAAAC45OzdulaH9+1Qauue2rZqvty9/dRpkOVj2HZvWa318ycoo0t/GU9yVnzz8lmKTm+lBh2usihfPXucNi+fVeeg7uLuZTNEn07/tfVxppxcXJXSsoeWT/5Bl9/9Co9osxMsJgcAAADgolZVUa7iI4dVVHBQebu3ac3scZr543BFJDVWbMP22rJipqLrt5BvSJTFK6FJJ5UWHdHuzStr7buksEC7Ni1XfKP2VtvHNWqvHRuWqbTo6BnP/Vz3X1VVpeIjhy1fR/NPuk1isy4qyNur7euWnPF+4NzijDoAAACAi9ruzas0+u37ZDA6yNnNQ34h9dT88psU17C9Du7N0aG929Wyz21W2zm7uis0Lk1bls+yuM/7eFsz58rRyUWhcWlWdaGxaXJ0dNK2VfOU0qrHGc39XPefn7tTo9++z6LM6Oik658dUes2Lu6eimvYTqtmjlG91GZ1vuce54/BZDKZ6tJwaOYb53suAIB/odxCzws9BeCMxfvkXegpABelrWPiL/QU8A959s7vz2r7pNC/ztFMLi58VQIAAAAAgB3h0ncAAAAAOAvbVs3Toj++slnn4ROoK+/j6mScHoI6AAAAAJyFyOQmCoywfTm/wYHIhdPHTw0AAAAAnAUnFzc5ubhd6GngEsI96gAAAAAA2BHOqAMAANiBwoOFmvnRdGXNzlJh3lG5erspJDlEHe7upHqN6+m9HsOVv/uwJMnJzUkBMYFqd1t71e9R/UinmR/P0OxPZlr1GxATqHv/uN/8/uD2PM35bLa2LtiqokOF8gr2UkRGpFoPbqPwtAhJ0osNntfAdwcppWuq+b0t17zZX+m9GkiSlo9aqiU/LtbBHYdkdDTKL8JX9Xukqd3tHU6578fP3eBglKuXq4LigpTSLVXNrm0uR+djv7J+fcsIhaaEqsfjvSRJh3Ye0oz3pyl7abaK84vl7uuusPph6vZwd+1ctVO/Pzv2pGM/MPEhZY7LPDa+0SCvIC8ltEtU14e7yc3H3dz2vR7D1fLGVmp1U2vz+5rPxGA0yCPAUwntEtT9kR5y86k+u5o5doUmvTlRj89/0mrsmuO8d+Nem5/d8Z5bPUzjnv5NJUdKdO3715nL8/fma9ZHM7R53mYVHSqSV5CnkrukqMPdneTue2zuX98yQjlLsy0+M0la+O0CLfpuoR6c9LAkqaqySvNHzNPKcZnK33NYji5O8o/2V5N+TdWkX9OTzhHAuUNQBwAAsAO/PvyzKisqddUrV8sv0k+FeUe1bdFWFR8uMrfpdG9nNenfVKVHS7Xg6/ka9X+/6pYQL0U1qidJCkoI1k2f32zRr9Hh2AWUu9fu0re3f62ghGD1fv5KBcYGqqywVBtnbNDktyZpyMhba51fn5f6KqFdgkWZq5erJGnFb8s16c2J6vlEL0U3i1FFWaVyN+1T7uZ9dd7/mrmbqkwqOlysnCXbNOez2Vr9x0rdPOIWuXi4WG1TWV6p7+78RgExARo4/Fp5BnmpYF+BNs/JUsmREqX1TLeY8y8P/azghGB1uq+zuczdz8Ni/KpKkw5s3a/fnxunkqMl6v/2wJPOu+Yzqao0KS8nT+OH/a6Jr/+lq1/rV+d9bzOkjZoNbGZ+/8Wgz9Skf1M16X/yYHxox0F9deMX8o8J0DVv9JdfpK9yN+/X1P9O1ua5m3Xb97dbfNHg6OKoGR9MV2q3+nJwcrDZ56xPZmr5r0vV66neCksLV2lhqfas3aXigpI67w+As0dQBwAAuMBKCoq1fXmObv7qFsU0j5Ek+Yb7KqJBpEU7Zw8XeQZ6yTPQS5c/3Vurx6/SppkbzUHd6GCUZ6CXzTFMJpPGPTNW/vUCdMvXt8pgPBbgQ1PC1PKGViedo6uXa619b5qxUfUvS1Pja44Fy+CEYEkNbLa35fi5ewV7KyQpRHGt4/W//p9o3pdz1eWBrlbb7N+Sq0M7DuqmLwbLN9xXUvVxq9e4nrmNk6uT+c8OTg5ycnOyuR/Hj+8d4q36l9VX5tjMU8675jOp2S6jTyOtnbC6zvstSc7uLnJ2P/ZFhMHBaNFvbf56ZbwcnBx04/9uNu+nT5ivwlJD9cHl72n6+9PU+9krze3TezXQxpkbtXz0MjUf1MJmn5tmblSzQc3NV2pIUmhy6GntD4Czxz3qAAAAF5izu7Oc3Z21cfp6VZRV1Gkbo6ODjI4OqiyvrFP7vRv2av/mXLUe3MYipNdw9T7zhbA8Az21a9VOHf77MvBzJTAuSAntErVh2nqb9e5+HjIYDVo/Za2qKqvO2biHdx3Slvlbaj3rXJuCfQXaNGuj1Rcs50NxfpG2zN+iZoOaW3wZIUmegV5qcHmG1k5cK5PJZC538XRR+zvaa/ans1RWVGazX89AT21btE2FBwvP6/wBnBxn1AEAAC4wo6ODrnr5av3xwu9a9utShaaGKbpZjNJ7pivExtnMyvIKLfh6vkqPlCimZZy5PDdrn15r8YpF24wrMtT7uSt1MCdPkhQQG3hGcxzz+CirgH/PuHvlE+arDv/ppF8e+knv9xiugJgARWZEKaF9oupfVt/mlwKnIyA2UFsWbLFZ5x3irZ5P9NLU4VM065NZCk8LV0zzGDXonSG/KP/TGqfm2JmqqlRRWv1lyWX/1+OU200bPkUzPphu3i4iI7JO252tvJyDksmkwNggm/WBcYEqKShW0cFCeQR4msubDWqhRd8v0sJv5qvD3Z2strvs/3ro16G/6L+d31JQfLCiGkUpqXOKEtsnnq9dAWADQR0AAMAOpHavr8QOicpZtl27Vu3Q5rmbNX/EPF35Qh816ttY0rFQWFFWIWd3Z3V9qJuSOiSZ+wiICdSgD66z6NfWvd1n4rLHeiquVZxFmVeQl/m/t31/h3Kz9ilnWY52Zu7QuGd+04oxy3XDpzeeXVg3mWQw1F7d/LqWyujTSNlLsrVr1Q6tm7xOc7+Yo2vfv17xbWw/19qWmmNXUVqhVX+u0r6Ne9Xi+pan3K71kLZq1LeRTCapYG++pr8/TT/c+72GjLzVYn0Ae+Ho7KhO93bWxNf+UrNrm1vVB8UH6z+/3aPd6/Zox4rt2r4sRz/d/4MaXdVIVw676gLMGPh3IqgDAADYCUcXJ8W3iVd8m3h1uLuT/nh+nGZ9PMMc1GtCobO7szwCPGU4IcE6ODnIv16Azb79o6vL87YdUFhq2GnPzTPAs9a+awQnhig4MUTNB7VQ0+XNNHLwV8pemqPYFrGnPV6NA9sOyDfC76RtXDxclNwpWcmdktX5/q76/q5vNeezWacV1I8/dt0e7q4f7vlOsz6Zqc73W98bfzx3P3fzdgHRAerxmJO+uvELZS/eprjW8XLxdFF5cZlMVVUWX1iUFBRXz/3vBflOl389f8lg0P6t+82r8x/vwNYDcvV2k7u/h1VdxhUZWjByvuZ8Nls+f9/bfzyD0aiI9AhFpEeo1U2tteqPlRr71Bi1u6OD/CJP/lkAODfs72s+AAAASKq+R7usuNz8viYUegZ6WYX0UwlNCVVQfJAWfD1fpirr+7lrguO5EhRffUl2ebHte6Hr4sDW/do8d7NSu1kH0doYDAYFxgaq/Ljjdiba39lRC76eryO5Bae1neHvs+jlf18+HxATqKqKKu3dsNei3Z71e6rro0/+5Udt3H3dFdc6Tkt/WqLyEst9PXrgiFb/tUppPdNs/pwYjEZ1eaiblv68xPx4uZM5F58lgNPDGXUAAIALrOhwkUY98osa9W2skKQQOXu4aM/a3Zo/Yp6SOyfXuZ+qyiodPXDkhFKDPAOrz773eamvvr3jG40Y/JXa39Gh+vFsRWXaNGujtszfctLHs5UcKbHqu3q1cmeNf+kPeQV5KaZlnLxDvHV0/xHN+Wy23P09FNkw6rTmfuLj2UJTQtXmlrY2t9m7YY9mfjRDGVc2VFB8kBycHJSzNFsrfluhtrfa3qauohpFKTgpRHM/n6NeT/eutV1ZYWn1vP++9H3qf6fI3d9DUY2q9zs4IVhxbeL1+3Pj1P3RHvKL9FNe9gFNemOi0nqmyzvE+4zn2Oup3hpx0xf6/q5v1fn+LvKN9NP+zbma+s5keQV721wpv0ZShyRFNIjUsl+XWtzD/uvQnxXVKEqRjerJM9BTh3cd0rR3pyogJkCBZ7i+AYDTR1AHAAC4wJzdnRXRIEKLvl2ggzsPqaqiUt4hPmrSr4na3dGhzv3s35yr/3Z+26LMwdlRTy97VpIU0SBSd/x0p+Z8Plt/DvtdRYeK5BnkpaiGUerxeK+T9v37s2Otyro82E3tbm+vuFbxWvHbci39ZamKDxfJ3c9dkQ2jdNPng+Xu627d2UnmbnAwytXTRYHxQWp7e3s1u7a5HJ1t/8rqHeIt3whfzf5kZvWK8waDfMN91eneTmp1U+s6jXsyrW5qrXHPjFWb29rJJ9THZpuZH83QzI9mSJLc/T0UnhauG/93k8V+939rgGZ+PEPjX/xDR/YfkXeIt1K6pKjD3R3Pan4B0QG6/ae7NOujGRr16K8qzi+WZ6Bndd//6WTxDHVbuj7cXSNu+sKiLL5NvNZMWKO5X85V6ZESeQZ6KqZFrDre01lGx9NbBR/AmTOYjn9mw0kMzXzjfM8FAPAvlFvoeepGgJ2K98m70FMALkpbx9R9/QBc3J698/uz2j4p9K9zNJOLC2fUAQAAAPyjDqedu+feA5cigjoAAADOqxOf7X686z+5UdFNo//B2QCXrkMbszTv2ZcV3ChDLZ56xKKuqrxC2/6apF1zF6pw9x4ZHBzkFhSokGaNFdOjq1z9q1f0z/zwM+2cOVeSZHBwkGuAn8Jat1DytdfIwdnZ3N+f/W9Ws8ceVGiLpuayA2vWacu4v3Q4a4sqy8rlHhyo13s765a7YhUS5qoxP+/Uq8+t19KN3a3mnhw2QR991UTdeoVo544idW0xS2OntFVSaHX9kCFD9PXXX9e679HR0crOzlZMTIweeughPfTQQxb1L7zwgsaOHavMzEyr/hwdHRUZGakBAwboxRdflKvrsacx1LZw548//qhBgwbVOp+zRVAHAADAeXXXqLtrrfMKPvPF1ABY2j59tmJ7ddf2abNVcvCQOXxXlpdr0Utv6kjODiUNvEZ+KYly8fZSUe4B7Zq7QNsmTFHqDQPN/QQ1ylDDe2+XqbJS+VuzlfnhZzLIoNSbrq117JzJ07X6i68V1bGdmj76gNyDA1V8IE9HNnyjrz7dpieH1f3pDba89957ev31183vw8LCNGLECPXs2VOS5OBw+mso9OzZUyNGjFB5ebmWLVumwYMHy2Aw6I03LG/7Pn6cGr6+vqe/E6eBoA4AAIDz6lTPXwdw9iqKS7R73iK1f2OYSg/la8eMOUrs10eStO3PiTq4YZPavz5MPnEx5m3cggIVkJaiE5ctMzo5ytXPt7pNYIACG6Rp/6o1SpXtoF6cd1Brv/pOsb0uU9otN5jL3YOD9ModDVSQf3aPS5QkHx8f+fhYLuro6+ur0NDQM+7TxcXFvH1UVJS6deumKVOmWAX1sx3nTPAcdQAAAAC4yO2ev0ieEWHyjAhTRIc22jFjtjmA75q7UEEZ6RYh/Xi1Xd4tSQXbd+rQxiwZHWs/x7tn/mJVVVQovq/tRxl6+zjVfUcukDVr1mj+/PlyPu7y/guJM+oAAAAAcJHbMX22Ijq0kSQFNc5QxcdfKG/tBgWmp6pwz14FpFleer7kzfd0YNUaSZJ3vSi1ffU5c13uskxNuPEOmSqrVFVeLhkNSr/95lrHLty7V47ubuaz8BeLP//8U56enqqoqFBpaamMRqM+/PBDq3bXXXed1aX169atU7169c7b3AjqAAAAAHARO7prjw5v3qpmjz0oSTI6OCisTUvtmD5Lgem27w1vcMdgVZaUattfk3Vw/UaLuoD0VDW4Y4gqS0u19c+JMjg4KKxV89onYJKk2s/K26vOnTvrk08+UWFhoYYPHy5HR0f169fPqt3w4cPVrVs3i7Lw8PDzOjeCOgAAAABcxLZPnyVTZaWm3vGAucwkk4yOTkq/rUgeoaEq3L3HYpuas99Onh5W/Tm4uMgjLESS1PCe2zX70We0fdos1eva0eb4HmGhqigqUsmhwyc9q+7p6ajiokpVVZlkNB4L9jX3sHt6n3089fb2Vn5+vlX54cOHre5x9/DwUEJCgiTpq6++UsOGDfXll1/qtttus2gXGhpqbvdP4R51AAAAALhIVVVWateseao/+Dq1f/tl86vD26/I1d9Xu+cuVES7Vtq/ao3yt2afdv8Go1EJ11ypjT+OUmVpmc02Ya2by+joqC1jx9usrwnisQkeqqgwaf2aAov6taur38fGWX9pcLqSk5O1bNkyq/Lly5crKSmp1u2MRqOeeuopPfPMMyouLj7reZwtgjoAAAAAXKRyl2Wq/Gihorp0lHe9SItXWMvm2j59lmKv6CG/pAQtfPENbR0/Sflbs1W0b79yM1dp/4pVMhhPHgvDWreQwWhU9sSpNuvdAgNUf8j12vbXZK38+974ov0HdHDDJj33f2v08fDNkqTEZC+16xiop4au1oI5B7Rje5FmT9+vYU+s1eVXhSkkzNWi321bCpWZmWnxKi8/+QryDz/8sMaPH69XXnlF69ev15o1a/T0009rwYIFevDBB0+67YABA+Tg4KCPPvrIovzw4cPau3evxauwsPCkfZ0tLn0HAAAAgIvU9mmzFJiRJicPd6u60FbNtGXceBXu3qtWzz+hbX9O0s4Zc7Th+18lk0nuwYEKapyhuCt62uj5GKODg2J6ddOWceMV3aOrHF1drNrE9Owmj/BQbf19gpa+9Z4qy8rkHhSolD6uuuWuGHO74f9rpPffytJzj61V7t4ShYa7qluvEN3zsPWl5Q/fnSmpsUXZjh07FBkZWetc27RpowkTJujFF1/UO++8I6PRqAYNGmjatGlKT08/6X46Ojrqvvvu05tvvqn//Oc/8vCoPsN/yy23WLV97bXX9MQTT5y0v7NhMJ340LxaDM1849SNAAA4TbmFnhd6CsAZi/fJu9BTAC5KyzfGXugp4B/yTtsfz2r7pNC/ztFMLi5c+g4AAAAAgB0hqAMAAAAAYEcI6gAAAAAA2BGCOgAAAAAAdoSgDgAAAACAHeHxbAAAAAAuKpkffqadM+dalXf+4C1ljR5nrjM4OMg1wE9hrVso+dpr5ODsbG77Z/+bbfbd+KF7FNGulSQpZ8oMZU+cqqJ9uTIYHeQeHKjwNi2VcM2VkqSNP4/RviXL1eHtly36KMrdr+n3PKL2b70kn9hoTbn9fsX2vkwJV19pbrP+u5+1Zex4tXrhSQWmp5rL5z/3qtwC/dX4gbvNZYteelP7V69Vu1efl29CnLn/k2l47x1yCwrUwhdes1nf7fP35ernq40/j1HWr2OrC40Gufr5KbhxhlJuGChnL57McqEQ1AEAAABcdIIaZajhvbdblLl4e1vUmSorlb81W5kffiaDDEq96VqL9g3vvUNBjRpYlNU8j3z7tFlaN/J7pd16kwLqp6iqolwFOTt0ZPvO055rQFqq8tZusAjqeWvWyzXQX3lr15uDemVZmQ5nbVFUp3bmdsX7D+jgxs2K6dldO6bPlm9CnNwCAtTt8/fNbbb+PkH7M1ep5XOPH9sPd3cdytoiSer0/htydHOzPFY+3uY/e0VFqOVzj8tUVaWju3Zr5cdfqLyoSE2H3nfa+4pzg6AOAAAA4KJjdHKUq5/vKevcAgMU2CBN+1etUaosg7qTh3utfexbukJhbVqqXteO5jKvqMgzmmtAeqrWff2jqiorZXRwUEVxsfKzc5Q2+AbtXrDY3O7Qps2qKi9XwHFn2HfMmKOQpo0U06OL5j75ouoPvl4OLs4W83Zwdam+eqCWfXHx8ZaTh0et8zt+W7cAf4W3bqEdM+ac0b7i3OAedQAAAACXrILtO3VoY5aMjqd3jtLF10eHN21W0f4DZz2HgPRUVZaUKH/zVklS3vpN8gwLVWirZjq8eYsqy8qqy9esl1twoNyDgyRJJpNJO2bMUUSHNvKMCJdHaLD2LFxy1vM5maLc/dqfufq0jxfOLY4+AAAAgItO7rJMTbjxDvP74EYZavro/RZ1psoqVZWXS0aD0m+3vid9+bsfy2C0PHfZafhrcgsKVNLAq7X0rfc0/T9D5REeKr+kBAU3aaiwVs0ttinYvsNiHpIkk8nirWdYqFz9/ZS3doP8khOVt3a9/OunyNXPV26BATq0abMC0+srb+0GBaYdO5t+YNVaVZaWmi/Pj+jQRtunzVJkx7andaym3vWQxXu3wEB1evfYves1+2CqqlJVWbkkqf7g609rDJxbBHUAAAAAF52A9FQ1uGOI+b2Dq4tVXWVpqbb+OVEGBweFtWpu1Ufa4BsUmJFmUebi7ydJcvXzVbtXn1fB9p06uG6DDm3crMwPP9P2qbPU8plHzWHdMzxMzR9/2KKPkoOHtOD5Vy3nm5aqvLXrlXDNlcpbu0HxfS6vLq+fUh3gExN0OGuL6nXrZN5mx/TZCm/bUkYHB0lSRLvWWv/tzyrcu08eoSF1PlZtXnza4h51g6ODRX3NPlSWl2vX7HkqyN6umMu717l/nHsEdQAAAAAXHQcXF3mE2Q6rx9c1vOd2zX70GW2fNsvifnNJcvHzqbWPGt71IuVdL1IxPbspen1nzX/2FeWt26DA9PqSJKOjo1UfBgfrO4wD0lO1dsR3KjtyRAXbchSQliJJ8q+fou1TZiggNVlVFRXm+9PLjhzV3sXLVFVZoZxJ0839mKqqtGP6bKVcP+Ck8z6ee0jQSe9RP34fvG+8VotffUdZv/ym5Ov613kMnFsEdQAAAACXLIPRqIRrrtS6kT8ool1rObg4n3qjWnhGRkiSKktKT3vb6vvUS7X1j4nyCAsxr7oeUD9Zqz75UrkrVskjLERuAf6SpF1z5ss1wE/NHnvIop8DK1dryx8TlXxtP5tfCJwLif36aMGw1xXdo6tc/77CAP8sFpMDAAAAcEkLa91CBqNR2ROnWpSXFxap5NBhi1fF3yF89WcjtenXsTq4YZOK9h/QoU2blfnB/+Ts7SW/5ITTnoNHSLDcAgOUPWGKAuqnmMvdAgPk6uer7VNnKODvs/RS9WXvYa2am8/o17yiunRUecER5WauqvPYpfkFVvtZVVFRa3u/5ER514tS1pg/Tns/cW5wRh0AAADAJc3o4KCYXt20Zdx4RffoKse/72df+dHnVm1TbhighKuvVGBGmnZMn62cydNVfuSonLy95JeUoFbPPyFnL68zmkdAeqp2zpxrvuy9hn9ainbOmKOAvxeSO7xlmwqytyvj7lut+nDycFdAg/raMW2WQpo2qtO4Mx943Kqs7avPyS+p9i8cYq/oqZUffa6Evr3lFhhQp3Fw7hhMphOWJKzF0Mw3zvdcAAD/QrmFnhd6CsAZi/fJu9BTAC5KyzfGXugp4B/yTtsfz2r7pNC/ztFMLi5c+g4AAAAAgB0hqAMAAAAAYEcI6gAAAAAA2BGCOgAAAAAAdoRV33HJmPTcLyo9UqI+w2/WpOd+0bo/lqvt/T3V4tZO5jabZ6zVH0O/1cMrXlfW1NUa//gPun3CE/IM9rHqb0SftxTXIVUdH71CkrR7ZY5+ufVTxbRJUt8PbrFqv3n6Gi0ZOUsHt+XKVGWSV6ivolslqtP/XSlJWvv7Us1660/dM+cFLftmthZ9MV13Tnlaji5OFv2UF5fps+6vqM09l6nx9W315eWvq2DPYavxjt+3U40NAAAA4OJBUMcly8HFUUtHzlRG/xZy9Xa3qo/rWF+uPu5a98dytbits0XdzmVbdXhHntKubm4uWzt2iRoNaqM1Y5foaG6BPIO9zXXbF23W+Md/VNv7LlNcx/oyGKS8rbnavjDL5txSr2iiuR9M0ubpa5XSq5FFXdbU1aosr1Rq78bmstb/6a4G17SwaOfs4XJGYwMAzp1Dz1p/0QugDm680BMA7BuXvuOSVa9lgjwCvbT4q5k26x2cHJTau7HW/r7Mqm7tuKUKbRClwPgQSVJZUak2Tl6ljAGtFNsuRev+sNxm6+z1Cm8UrWaDO8o/Jkh+0UFK6JymLk/2tTm2u7+n4jqkaM3YpTbHju9U/SVCDWcPF3kEelm8nNycz2hsAAAAAPaNoI5LltFoVNv7eijzp/k6si/fZpv0vs11ePsB7Vy21VxWVlSqrKlrlN732Nn0TZNXyT8mWP4xQUrt3Vhrxi2VyWQy17sHeClvyz4d2Ly3zvNL79tcO5ZsUcHuQ+aywzvztHN5ttKPO5N/KmcyNgAAAAD7xaXvuKQldElXcFK4FnwyRZe90N+qPiA+RGEN6mntuKWKbBonqTqUm0wmJfdoaG63ZuxSpfRuJEmKaZOksiMl2rlsq6KaxUuSGl/XRrtXbNO3A96Vd5ivQhvUU3TrRKVc3liOzrb/mkW3SZJnkJfW/r5Ure/uLkla9/syeYX4qF6LeIu2c9+boPkfTbYo6/vhLYpsEntGYwMAAACwX/wWj0teuwd7atRdX6jpzR1s1qf1baZZb/+pzo9fJWcPF60dt1RJ3RuY7wE/mL1f+9buUJ//3iRJMjo6KKlHhtaMXWoO6k5uzur7wS06vCNPO5Zs0d7V2zX7v+O14od5GvT1PebL1I9ndDCq/pVNte73ZWp1VzfJZNK6P5Yr7aqmMhgtL3ZpOriD0q5salFWswDemYwNAAAAwH4R1HHJi2wap5jWiZr3wUTV79PUqj65R0PNevtPbZq8ShFNYrU7M0dt7+9prl8zdomqKqr02WWvHtvIZJKDs6NKH79KLl6u5mLfqAD5RgWowTUt1OL2LhrZ921tmrxKaVc1szm3tKuaafFXM7Vj8RaZTCYd2ZevtD7Wbd18PeRbL/Ck+3m6YwOotuCVb7V1wiJJ1V/EuYf4Ka5nS6XddJn2r9qiqQ+8rwET3pSzl+WilGP7P6eUgZ0Vc1lzjb/5FSX376T0m3tYtJnz7Jcq3HdIl30yVGtGTtDOOat0+cgnbc6jqrJKG0fN1JbxC3Rk5345OjspIC1W6YN7KDjD8iqbyvIKbfx1prKnLlXB9lwZHYzyCA1QRNt0JV3TXu6Bvlb7drywFqnq8t97zftRuPegenz6iALTY81tlr43Soeydqr7hw9JklZ9OV6rR0yw6su7Xog6v3OPxg14/iRHWWr11I3yDPW3Op4mk0mbf5+nLX8uUH72HhkcHOQVEajYHi2U0KetHF2dVVFSptUjJ2j79BUqOnBYTu6u8okJVcq1XRTVPuOk4wIAcDEiqONfod0DvfTdoPfkFxNkVefs4aLE7g20ZtxSHd6ZJ7/oQEU2qf5ltaqiUuv/XK4OQ3srunWixXa/D/1WGyZmquGAVjbH9A73k6Ork8qLy2qdl29UgCKbxmrt3/e812uZIO9wv7PY07qPDeCYsJb11fqpG1VZXqHdC9ZqyX9/kcHRqKC02FNu6+rrqZaPXac5z36liLbp8ouPkCTlTF+uXfPX6PIRT8jocPIlYUwmk+Y9P0J7l25Q43uvVmjTJJUXlmjTmNmaev97av/SbYrqUH07TmVZuaYP/UiHN+9Sg9t6K6hBnFx9PXV0T56ypy7VxlGz1Pjuq6z27XhGJ8v//Ts4O2nFp+PMobw2PrFh6vru/RZlBgejnL3cdc24Y19mrv9xqnYvWm/R1snTVXlrs636nP/SN9oxK1Ppg3uq+dCBcvH11KHNu7TxlxnyCPVXVIeGWvzWTzqwLlvNHh4gn5hQleYX6sCarSrLLzzpfAEAuFgR1PGvEJgYqpRejbTix3k269P7Ntcvt36qg9ty1XxIR3P51jkbVFpQrPS+zS3OnEtSYtd0rR27VA0HtNKCT6eovKRcse2S5R3mp9IjxVrx43xVVVSpXqvEE4ezGnvKS6MlST2GDbDZpqywVIUHjliUObo6ycXT9azGBlDNwdlRbgHVj1xMurq9dsxeqV1zV9cpqEtSZLsMxXRvqgWvfKuen/2fyo4Uacl/f1Gju6+Sd72QU26fM325ts9coY6v36XIdg3M5S0fv16lBYVa9MYPCmueIkc3F234eYb2r9qinl88Jv+kKHNbj1B/hTROtFjo8sR9q01Cn7bKGjdXuxasVUTrtFrbGR2MtfZ1fLmjm8tJ25r3e9pyZU9eog6v3WlxZtwzLECR7RqovLBEkrRz3mo1e7CfeW6eYQEKSKl30r4BALiYEdTxr9H6nu7aNHmVzbqIxjHyiwnS4R15Sr2iibl8zdglqtcywSqkS9VBfenIWdq/aY8im8Yp8+cFmvTsLyrKOyoXbzcFJ4frmo9vk7+Ns/gn9jPj9XEyOBgV39n2L8gLPpmiBZ9MsShr0K+luj1z9VmNDcA2Rxen0z5b2+zB/vrz5le1euQEFWTvk29cuJL7dzz1hpJypiyVV1SwRUivkTqoq3bMWqk9SzYoqkNDZU9dptBmKRYh/XgGg+G05i1JnuEBSryqnTI//V3hLVOt1sk4X7KnLJF3vRCbl68bDAY5e7pJktz8vbVrwTpFdWwkJ3frf48BALjUENRxyejx4kCbf67hE+6vBxa/Uuv2Q357xKqs73tDam0fmh6lh1e8bn4f1Ty+1raSlNanmc37zx1dnXTPnBdq3e62v544ab9RzeNPOTaAujGZTNq7dKN2L16v5H7HQvZv1zxj1baipNzivZOHm1o/daOmD/1Ijq7Ouvzrp+ocmgt25MonJtRmnXd0qLmNJB3ZkauQxpZXy8x68jPtXbpBkuQbH6Eenx7792zX/DX6uftQi/ZpN/Wwup8+fXAPbflrobZNXqq4ni1szuXw1t1WfcVc1lwt/++6U+2iTQU798u7XvAp27V47DrNf3GkRl3+uHwTIhScEa+oTo2s7t0HAOBSQVAHAPzr1YTZqooqmaqqFNO9mTJuvVx563MkSd0/etjqTO6U+9+z6ie0abIC68fILzFSnqH+pzeJEy5ZPx0tHrlWFSVl2jhqpnIzN1vUhTROVItHB1mUOXtbLownSa5+Xqp/XVet+nK8ors2saqXJK96Ier0+l0WZU4eZ3GGu477HNIoQVf9MkwH1m7T/tXbtHfZRm34daYybrtcDYb0OvPxAQCwUwR1AMC/Xk2YNTo6yC3QR0ZHB4t6z7AAq1Xfa1sgzuBglOEUi8edyDsqWPnZe23WFeTsNbeRJK+oIBVs32fRxi2w+nGNJ85Rqr5f3CuybrfBpFzbRZt+m62s3+bYrHdwdKhzX3XhHRWs/Jx9p26o6hX5gxsmKLhhgtJu7K7VIydqzcgJqn9Ddzk48esMAODSwv/ZAAD/eqcTZs+H6K5NNW/YSO2cu9rqPvX1P02Ti4+HwpqnVLft1lSrPv9TBzftqPU+9TPl5O6i9ME9tXrEBEW2tb5f/lyL7t5M854foR1zVlndp24ymVReWGK+T/1EPrGhqqqsUlVZOUEduAg1Sd52oadgl/yciy/0FM65vwoantX2SbbvDLvk8X82AAD+IRWl5TqYtdOizMndRdHdmmr7jBVa8Mq3anxvX4U2TTY/nm3n3NVq/9JtcnRzkSSlDuyi3fPXatqDH6jBLb0U3DBBzl5uKtiRq90L11ktBFdZVqHivAKLMoODUa6+njbnmHhVO234ZYaypyxVQP1oi7qqyiqrvmSoXuztTER3aaKds1dq3gsjlD64p8JapMjF10uHt+zShl9mKLlfR0V1aKgp972rmG7N5J9STy4+HsrP3quV//tDIU0S5eRhO8gDAHAxI6gDAPAPObIjVxNued2iLLRpsrq+d7/avXirNvwyQxt+nqEl7/wiB2dHBabFqtsHD1osmubg4qSu792vDb/M1Na/Firzf7/LZDLJMyxA4a3qK2VgF4v+9yxapzFXPWVR5l0vRFf+8KzNORodHdTw9is0b9hIq7r8bXus+jI6O+q66e+exlE4xmAwqO3zQ5T1+zxtHb9Qa76ZJKODUV6RQYrt2VJhLVMlSWEtU7V14iJlfva7KkvK5Rboo4g26WpwS88zGhcAAHtnMJ34wNVaDM1843zPBQDwL5RbaPvMLnAx8H+74kJPAbgo+b2Uf6GnYJcuxUvfz9ZDSa9d6ClcEP/Mg1IBAAAAAECdENQBAAAAALAjBHUAAAAAAOwIQR0AAAAAADtCUAcAAAAAwI4Q1AEAAAAAsCMEdQAAAAAA7AhBHQAAAAAAO0JQBwAAAADAjhDUAQAAAACwIwR1AAAAAADsCEEdAAAAAAA7QlAHAAAAAMCOENQBAAAAALAjBHUAAAAAAOwIQR0AAAAAADtCUAcAAAAAwI4Q1AEAAAAAsCMEdQAAAAAA7AhBHQAAAAAAO0JQBwAAAADAjhDUAQAAAACwIwR1AAAAAADsCEEdAAAAAAA7QlAHAAAAAMCOENQBAAAAALAjBHUAAAAAAOyI44WeAAAAAC5eU5Z9rw07lliVRwYm6kDBbjVO6KxmSd2s6hdvmKRV2+bolh7D5GB00JGiQ1q0YYK2525QcWmhPFy9FRfWQM1TesjN2cO83Zg5HyjQJ0IdMq6x6nPkpGFqFN9RjRI6WZQvWj9BW/es1nVdHtMHYx866f60SO6h1Hot9PWUlzSo06MK8o00163fvlirts7RwSN7ZTAYFeQTqSaJXRQbmmZus3N/ln6b95H8vUJ1XZfHZDQcOy/2vz+fUIcGVys1uuVJ5wAABHUAAACclXrBKerW5HqLMgejoxZvmKj12xdZBXWTyaT12xcrJaq5HIwOyi88oF9nvytfz2D1aHazvN0DlHdkj+at+V05+9ZrQMeH5HpcWD8bt/Z80fznrF0rtGj9BN3Y7SlzmZOji0pKj1ptN3fNOK3aOketUi9XXFgDVZkqtXHHMo1f+IXaZ1yjhnHtLdrnF+Zpw/Ylqk8oB3AGuPQdAAAAZ8XB6CgPV2+Ll6uzu+pHt9Lho/u1O2+rRftdBzaroChP9aNbSZJmrhwlB6Oj+ra5WxGBCfJy91NMSH31bXuPjpbka8G68edsrsfP0cXR1arM2dHFapu9B7O1YvMMtU3royaJXeTrGSR/r1C1rt9bDeM7au7qsTpSdMhim4Zx7bVowwRVVlacs7kD+PcgqAMAAOC8CPQJV7BvPa3LWWhRvn77YoX5x8rfK0QlZYXanrtRDWLbytHB2aKdh6u3kiObKmtXpkwm0z85dQubdi6Xk6OL0mPbWNU1TuisKlOltuxeaVHeML6jTKYqrdw6+5+aJoBLCJe+AwAA4Kxk71unT/94zKKsaVJ3NU/urrTolpq79nd1yOgnZ0cXlZWXaPPulerQoPoe88NH90syyc8zxGbffl4hKi0vUnHZUbm7eJ3vXbHp0NFc+bgHyMFo/auzp5uPnB1ddbhwv0W5k4OTWiT30IJ145UW01ouTm7/1HQBXAII6gAAADgrkYEJ6tRwgEWZq7O7JCkpsqnmrBmrzbtWqH50K2XtWiGDwaDEyMYXYqpn7EzO59ePbqUVm2dqWdY0tal/xTmfE4BLF0EdAAAAZ8XRwVm+nkE265ydXBUf3lDrti9W/ehWWr99sRLDG5nvBffxDJJk0MEj+xRvY/tDR/bJxcldbs6ep5yHs5OrSitKrMpLy4vlfBZntP08g7Xn4DZVVlVYnVU/WpyvsooS+XpY77/R6KBW9Xtr6vIflBHb3qr+n3b8Cv1Gg1Euzu4K9A5XUmQTpdZrIYPB8q7YcfM/0Y7cTRrQ8WGF+NVTQWGevp7y0knH6Nb4OqVGt1RFZZm+mviCDAaDbu0xTA4OdY8d7/UYrvzdh3XNm/2V3quBRd0nfT/U/i371eelvmrU1/LLnrlfzNaMD6ar60Pd1OaWdhZ1mWNX6Pdnxyq+bYJu+PQmc3lJQbHebPu6bv5qiGKax1ps8+ew37VizHL1e3OA6vdI04kObs/T3M/naOvCrSrMOyp3P3cFxAaqcd8mSuuZJqOjgyTpxQbP29zPa97srzGPjTrpsWg1oKEW/lp9W0VwrL/ydubrpneu1MgHxtpsP2zuffIO8tTED+Zo0ofz5OBoVL/nL1PrgY0kSZM+mquJ78+Vo4ujTFVVqiyvOun476x7TEaHYz8XTzYbrquf6qoW12SYy7Yt36kpn8xXduYulZdUKCjGXy2uaaAONzez2Pbh5NclSQ/+fJNiGkWYyyvKKvR8+w9VdLhE935znbyDvfR236907cu91PTKY8e9qqpK7dq1U3h4uEaNOvlxuxQQ1AEAAHBepUW30pi5H2rb3rXac3Cb2qb1Mde5OXuoXnCSVm+bq8YJHS3uUy8sKdDGncuUEtVMBoPhlOP4eQZr/+EdVuX783fK1zP4jOefGNlYK7fO1ppt89UwvoNF3YrN02U0OCg+vKHtbSMaaXnWdC3eOPGMxz+XalboN5mqVFR6RDn7Nmj26t+0efdKXdHydhmN1eHySNEh7TmYrYy49lqXs1AhfvXk6e5nsWr+is0zlLNvvfq2vcdc5uJUvUDf5t2r5O8dKplM2rJnlZIim5zWPL1DfZQ5doVFUN+5coeOHjgqJzdnm9tk/rZCbW5p+/d/21nVGx2N2rpwq7Yt3qbYFrE2ejimvLhMayeuUZtb2mrFb8utgvqu1Tv17R3fKCg+SL2e7q3A2EBJ0p61u7Xkp8UKSgxWaHKouX2fl/oqoV2CRR+uXq4aOuNR7cjcrl8f/kUuXq6qKq/QM1PvNrcZ/99Z8gv31qHdBSovrVDDHsnaOHebJOnJiXfK1bP6WGRn7tLXD45T7raD8g7ylMlkksFgUGVllRJa1JMkjXtjuuZ8u0ySdNfnA+Ti7qwl49Zo7vfL1evB9pr/4wq1HthIIQkBGvnAWDk6O2jJ2DVq2S9DtVk1ZaO+fmicWlzTQPd+c73cvFy0aUGO/nhrhrJX7NLg9/pa/N31DfPW4jGrLYL6qimb5OLurKLD1V+yBcf664pHOmnMy1OU0DJaSqpu984772jr1q36/fffT/rZXSpYTA4AAABnpbKqQoUlBRav4uMecRYeEC8fj0BNWfa9/DyDFRZgGZI6ZvRXZVWFxs3/VLsObNGRokPK2bde4+Z/Ik9XH7Wu39uifXFZofYf3mnxKio5okbxnZS9d52WbJysg0f2Kq9gjxasG6+9B7PVKL7jGe9fmH+sGsZ10Ly1v2t51gzlFx7QwSP7tGDdeK3cMlvt0q+Sl7tfrdu3SbtC63MWqaKy7IzncK7UrNDv6earYN8oNU/urt4tb1POvvVav32xud267YsUE1Jf6bFttWnnclVUlsloMFqskO/k4GxVVvNFy7qchUqJbKrkqGZal7PotOfZoHcD5SzNUf7efHNZ5m8r1KB3hoyO1hEme0m2yksq1OneLiotLNWOzO1WbZzcnNW4b2NNe3fKKcdfN3mdAuOC1Pa29tq+3HIeJpNJ454Zq4DoAN367W1K7pSsgOgABUQHKP3yBrrlm9sUkmS55oKrl6s8A70sXo4uTvIM9JKbT/VtItFN6qmyvFLeQZ7yDvKUq5eLVk3ZpOZ90yVJTa6or2ZXpWv97OqnKHgFuJvbZnRPVvubmurnp/9SaVGZclbukQxSbNNIjR8+W9mZuzTzq8XqOLiZJMk/wkdRDcJ0zTPd1XFwM036cK5MJpNcPJzl4Vt99Un7m5pp4gdzVVFm+8kFpUVl+uWZiUrvkqBrX+qliNQQ+Uf6qtWAhrru9d5aOWmjMidssNimed90rRi/XmUl5eayRaNXmfexRvubmio8OVi/PDtBkrRhwwY999xz+uyzzxQYGHjKz+9SQFAHAADAWdmeu0FfTXzO4jVqzvvmeoPBoPrRLVVaXmR+JNvxfD2DdG2nR+TtHqCJS0bqmykva3rmz4oITFB/G89Q37RzmX6a+bbFa23OAoUFxKpPm7uUs2+9Rs1+X2Pmfqg9B7epb9t7FeAddlb72CHjGnVq2F9Zu5br+2lv6JeZ72h33hb1bnmb1Vn2E0UFJSkyKFFVppNfZnyhRAUlKdA7XFv2rJL093PucxYpOaqZ/L1C5OsZpM27Vp6il2PyCw9o78FsJUQ0VmJEI+3O26qCooOnNSePAE/Ft4nXynGZkv4+wz1pjRpdbXttg8zfliv98nQ5ODkorVcDrRiz3Ga7jvd0Um5WrtZNXnvS8VeMWa6MKzLk6uWqhHaJWjl2hblu74a9OrB1v1oPaSOD0XacqssVICeKbFRPVZUmHdpd/aXAqkkb5R/ho5D4AElS0z5pSm4bo9LicpvbX/5wBxkdjPr+//5Q1sIc+YR46eqnumnV5I2a9fVSubg7q2GPZKvtOt3SQpXlVRbhWZI6Dm6mqooq81n4E22ct02Fh4vV+daWVnXpXRIVFOOv5X+usyiPSg+Vf4S3Vk3aKEk6tDtfW5fsULOrLIO6wWDQda/11talO/X5559ryJAhGjRokPr06aN/Cy59BwAAwBnr3vQGdW96wynbNUvqrmZJ3Wut93b3r1M/17S//6T19YJTVC845ZT9SFJqdEulRluHDG+PAN3f912r8vrRrWx+0XC8yKBEm9te1eY/dZrTheLnFaIDBbslSTv2b1JFZbmi/z6OyZFNq8+Q12tep77W5SxSdEiqeUHBesHJWp+zSC1Te53WnBpf3UST356k9nd20Lop6+QX5a/QFOsvXEqPlmjdlHW69bvbJUkZV2Ro5OCv1POJXnJ2d7Fo6xXsrZY3tNSMD6YppYvtn5O8nDztXLVTA9+9VpLUoHeGJr81Se3v6iiDwaCDOXmSpICYY2d2C/OO6v1e75nfdxvaXc0HtTC/H/P4KKtQf8+4e+UT5mt+7+LhLKOjUYvHrFaP+9pp0ehVatkvQ1uX7ZQkhSVWr4OQ2LKeVk3epBc6fmTRn1+4j65+upv+d/svCoz2k7Obk6LSQtWoV4o2zt2mgHq+cnBysNpfnxAvuXq6qKrC8oskZzcn9bivrcYPn6VWAxvKzcvVon7/tkOSZP4i4UQhcf7an239BU2LfhlaNHqVml2VrsVjViu1Y7w8/d2t2vlH+KjvU1119913KzIyUpMnT7Y5zqWKM+oAAADAv5xJJhlUfRZ4Xc5CJUY0Nt+vnhTZVHsOblN+4YFT9lNlqtL67YuVHNnMXJYS1Uzrty+W6TSvKEjskKiyojLlLM1R5m8rrBaPq7Hmr9Xyj/Qz3xMemhImn3BfrZ24xmb7tre2U+HBIq34bYXN+szfliu+bbzc/TzM8yg9WqJti7bVOlc3X3fdNepu3TXqbrl6uaqyvNKi/rLHeprra15eQdaPG3R0ctDi31brwI7DysncraZXpmnTghyLNsltYiRJd30xUI+OvdX8uvOzAVo4apWc3Zx0NK9QVZXVx/vyhzqoqKBEJUdLa51/bVr2bygPXzdN/7z22xdMp/lIhGZ90pWTuVsHdhzW4t9Wn/Qe+Jb9MhQWFqb7779f3t7epzfQRY4z6gAAAMC/3KEj++Tt7q+SskJt3bNaVVWVWp09z1xvMlVpXc4iq/UCTrR93wYVluRr4tKvpaXHyk2mKu3Yn6V6wdaXXtfG6OigjCszNOvjGdq1eqcGvjvIZrsVv61Q7pb9eqnRsGPjVZm04rcVanxNU6v2rt5uand7O83+dKaSOiZZ1FVVVmnl7yt19MBRy/4qq5T523LFtYqTfz1/SVJe9gGFpVaf4Tc6GOVfL+DveVufC/UM8DTXn3yfjSovrdDPT/2l+p0TdCSvUPu3VZ+VfqT+G9Vz+TsY71yzVx0GH7vKYcVf67Vu5mY9+PNN+mTIT8rPrV4nIrCen8ISg7R38wGb95vn7zuikqOlcvNxsapzcDTq8oc66scnx6vdDZYLAgbFVq/LsG/LAcU2ibTadt/WPIXEW99P7uHnpvqd4vXzU3+porRSqR3iVFpY+/oNjo6OcnT898XWf98eAwAAADDbsX+T8gr2qFF8J23csUyebr7q3fI2izbbczdoxeaZapnaS0ZD7Rfl1pyNb558mUX5ko2TtS5n4WkFdUlqdHUTLRg5X2k90+XmY/2IvX2b9mn32t0a/NUQi/ri/GJ9fetIHdi6X4Fx1o/Oa3F9Sy3+fpEWfbfQojxrTpbKCkt15693y2g8dp957uZc/f7sWJUUFCs0NUyBsYHV8+qRVut96meq+VXpmv7FIt35+UAtGrVSoQmB2rv5gB4de6skafvq3frpqQla+vtac1A/cqBQo4dN1uUPdVBESojSuyVq0a+rtH7WFqV2jFfvRzrqi7tGafzw2VbjzfhqsRycjHJ2dbI5n0a9UjTjy0Wa9NE8i/LktrFy93XVzBGLrYL6mmlZ2p99SL0etL1+Q8t+Gfrszl/V5Y5WFo9wwzEcFQAAAOBfomaF/qPFh5V7eIeWbJyi8Yu+VExImlLqNde6nIWKD2+oAO8wi1f96FYqLjuqnH3ra+27uPSotu1dq9R6Lay2T6nXXFv3rFZJWeFpzTcoLkiPznlcfV7qa7M+87flimgQoehmMQpODDG/opvFKDw9XCt+s72onKOLkzre21mLf7C8pDtzzHIldkhSaHKoRX9pPdLk6uWq1eNXyWAwqM9LfZWXfUBf3fSlNs7YoLycPO3fkqulvyxR0aFCi5AvSSVHSnT0wBGLV1mR7bPIvR7soJcWPKDEVvW0dNxaxTWrDsFhSUEKSwpSQKSvJGnHmr3avChHBfuP6vvH/1RAPV+1vb76rLdviJc8/d31y3MTVXykRGmdElQvI0xZf19Gf3B3vvZtydNfw2dr9jdL1efxLjavBKhxxSMdtWj0KpUdt5Cdi7uzBgzrqTXTsvTzsxO0e0OuDu48rIW/rtSPT45Xwx7JatTL9joAKR3i9NKCB9Trgfa1jvlvxxl1AAAA4F+iZoV+o8EoFyd3BfqEq0ODa5Rar7n25+/SgYLd6tLY+hJzFyc3RQUlaV3OIsWGptnoWVq/fYmcHJ0VGZRkVRcVlCRHBydt3LFUDU/zUXnuvtYLjUlSZXmFVv25Sm1vbWuzPrVbfS38er66PNDNZn3DPo208Ov52r9lvyTp6IGjypqzSde83t+qrcFoVErXVK34bYWaX9dSkQ2jdMfPd2nu53M04ZXxOppX/Xz3kKQQXfZ/PdX4hNXpf392rFWfXR7spna3WwdVR2cHefq7a+WkDSo8XKzohuGa/1OmzX346OYfLd7vWr/P/IxyryAPySSNfXWarnutt/4zYpCeb/+hyorK9b/bfpHR0ajI+iG69aNrlN4lUTNHLLY1hCQpsXWMEltFm5/hXqNRzxR5BXpo6ifz9cEN36u8tEJBMX7qdndrdRzcvNbV7w0Gg80F5HCMwWSq2+3/QzPfON9zAQD8C+UWel7oKQBnzP9t288XBnByfi/ln7rRv5Cfc/GFnoLdeSjptQs9hQuCS98BAAAAALAjXPoOAAAA4B+xccdSzcj8RZpkXecb7qP/jL3vn58UYIcI6gAAAAD+EbGh6QrpHC2fh49Y1RkdHS7AjAD7RFAHAAAA8I9wdnKVs5Or/Oo5X+ipAHaNe9QBAAAAALAjBHUAAAAAAOwIQR0AAAAAADtCUAcAAAAAwI4Q1AEAAAAAsCMEdQAAAAAA7AhBHQAAAAAAO0JQBwAAAADAjhDUAQAAAACwIwR1AAAAAADsCEEdAAAAAAA7QlAHAAAAAMCOENQBAAAAALAjBHUAAAAAAOwIQR0AAAAAADtCUAcAAAAAwI4Q1AEAAAAAsCMEdQAAAAAA7AhBHQAAAAAAO0JQBwAAAADAjhDUAQAAAACwI451bVj8SfD5nAcA4N/q5qILPQMAAAC7whl1AAAAAADsCEEdAAAAAAA7QlAHAAAAAMCOENQBAAAAALAjBHUAAAAAAOwIQR0AAAAAADtCUAcAAAAAwI4Q1AEAAAAAsCMEdQAAAAAA7AhBHQAAAAAAO0JQBwAAAADAjhDUAQAAAACwI44XegIAgH+3D5PGX+gpAGfusws9AUhSbuWFngEAnFucUQcAAAAAwI4Q1AEAAAAAsCMEdQAAAAAA7AhBHQAAAAAAO0JQBwAAAADAjhDUAQAAAACwIwR1AAAAAADsCEEdAAAAAAA7QlAHAAAAAMCOENQBAAAAALAjBHUAAAAAAOwIQR0AAAAAADtCUAcAAAAAwI4Q1AEAAAAAsCMEdQAAAAAA7AhBHQAAAAAAO0JQBwAAAADAjhDUAQAAAACwIwR1AAAAAADsCEEdAAAAAAA7QlAHAAAAAMCOENQBAAAAALAjBHUAAAAAAOwIQR0AAAAAADtCUAcAAAAAwI4Q1AEAAAAAsCMEdQAAAAAA7AhBHQAAAAAAO0JQBwAAAADAjhDUAQAAAACwIwR1AAAAAADsCEEdAAAAAAA7QlAHAAAAAMCOENQBAAAAALAjBHUAAAAAAOwIQR0AAAAAADtCUAcAAAAAwI4Q1AEAAAAAsCMEdQAAAAAA7AhBHQAAAAAAO0JQBwAAAADAjhDUAQAAAACwIwR1AAAAAADsCEEdAAAAAAA7QlAHAAAAAMCOENQBAAAAALAjBHUAAAAAAOwIQR0AAAAAADtCUAcAAAAAwI4Q1AEAAAAAsCMEdQAAAAAA7AhBHQAAAAAAO0JQBwAAAADAjhDUAQAAAACwIwR1AAAAAADsCEEdAAAAAAA7QlAHAAAAAMCOENQBAAAAALAjBHUAAAAAAOwIQR0AAAAAADtCUAcAAAAAwI4Q1AEAAAAAsCMEdQAAAAAA7AhBHQAAAAAAO0JQBwAAAADAjhDUAQAAAACwIwR1AAAAAADsCEEdAAAAAAA7QlAHAAAAAMCOENQBAAAAALAjBHUAAAAAAOwIQR0AAAAAADtCUAcAAAAAwI4Q1AEAAAAAsCMEdQAAAAAA7AhBHQAAAAAAO0JQBwAAAADAjhDUAQAAAACwIwR1AAAAAADsCEEdAAAAAAA7QlAHAAAAAMCOENQBAAAAALAjjhd6ArA/02d+qU2b5pnfu7h4KDgoVq1aDlBAQJQk6dPPblWPy+5TbEwTc7ucnExlrpqoAwdyZKoyyc8/XGn1uygluZ25TcGRA/rhx8fM752cXOTpGaDwsGQ1aHCZfH1CzHUbNs7V/AU/6tYhH2nlqolatvxP3XzjcDk6OlnMt7yiVN98+7BaNL9aDdK767sf/k9Hj+ZZ7VfLFv3UuFFvqzm4uHjI3z9CLZpdo7CwJIt+ly//Q1u2LFFh0SE5ObnKzy9cGQ16KDamsSRp3B9vKDAgSg0aXGbRpy3Nm/XVisy/NKDfMPkct5+FhYf086/PqkWzq5We3vWkfRzI264lS8ZqX+4WlZcXy83NRyHBcWrX9ga5uXmb223dulSr105T3oHtqjJVyds7SHGxzZSe1kWurp4Wx7bmWM+c9ZXVeA4Ojrrjts8kHfu5qDmONbZlL9ekyR/q7juPbW8ymbR+wyxt2DBHBw/tltFolI93sBITWys1taOcHF20ZOlYLVv+u9WYvj6hGnTtqyc9DgAAAMCljKAOm6Ki0tW5422SpKKifC1eOkYTJr6nG29422b71Wumav6CH9Wo4eVq3+4mORgdlZ2zQnPmfqNDh3apdatrLdpf0ftR+ftFqKKiVHkHd2n1mikaNep59ez5gCIj6lv1n5TYRosWj9a27GVKTGhlUbd161JVVVUoMaG1uax5s75KTelo0c7JydXmHEpKjmj5ij81YeJ7GnTtq3J395EkzZnzjfblblXbtjfIzy9cpSVHtXffZpWWHLWan6eHv26+cbj5/cpVE7V9xxpd2ftRc5mzs5sOHNiuGTO/1FV9npDBUH1By6zZXysoKFppaV1sHtsaxcUF+vPPt1UvuqGuuHyonJ3ddeToAWVnZ6q8vFRubtXtFi0ercyVE5TR4DK1bN5P7h6+ys/fp3XrZmpT1gJlNOhus39nJ7dTBmQHByetyJyg+qmd5OLiUWu76TM+17Zty9WkyRVq1/ZGubp5KS9vh1avniIvr0DzFzx+fhEWx0iSDEYu9AEAAMC/G0EdNjkYncyB1d3dR40bXa5xv7+u4uICizO3knT06EEtWPizGqR3V8sW/czlDTN6ymh01Lz5PygurplCguPNda4unub+vb2DFRPdUH/8+bZmzhqh6we9IeMJYc3NzVvR9Rppw8Y5VkF9w8a5ioluIldXT3OZk5Oruf/a1MzB3d1HjRtfoc1bFis3d6ti/j5bnp2TqbZtrld0vYzqDbwCFRQUY7Mvo9FoMZ6jo4tVmSR1aH+zfv71Wa1cNVmNGvbUho1ztXdflgb2f0kGg+Gk8927b7PKyorVqcMQGY0OkiRv7yBFhKea2+zL3aoVmePVpvV1FoHc2ytQUZFpKi0tqn0Ag055zCIj6iu/IFfLV4xX61YDbbbZvGWxsjYvVI/L7jdfeVAzh5joRiorLzaX2TpGAAAAwL8dp65wSuXlJcrKWihv72CLMFxjy9alqqqqVMOGPa3q6qd2kpOTizZvXnTSMQwGoxo06KajR/O0/0C2zTYpKe21a9cGHTlywFxWUJCrPXs2KSWl/ent1HEqKsq0adN8SZLR4dh3V+5uPtq+fZXKyopr2/S0ubl5q2OHwVqy9Dft2LlW8xf8pLZtrpenp/8pt3V381GVqVLbspfLZDLZbJO1eaGcnFyUltbZZr2Li/tZzd9gMKpl82u0Zu00HT160GabzZsXytcn1CKkH9veIBfns5sDAAAAcKnjjDpsytm+Ul989R9JUkVFqdzdfdSr50Pmy7WPl5+/V87ObvJw97Wqc3BwlLdXkA7n7zvlmL6+YZKkI0cOKCQ4zqo+KjJdHh6+2rBxrpo36ytJ2rhpnjw9/RUZkWrRduGiUVq85DeLst69Hra4B33suFclg0EVFWWSTAoKjFbEcf106DBY06Z/ppHfPKCAgCiFhiQqLq6ZwkITT7kvJxMb00Txcc3114T/KrpeIyUnta3TdiEh8WrcqLemTftMs52/UXBwrCLCU5WU2MZ8Vjo/f5+8vYLkYDz9v9plZcXmz7xGWFiievcaajn/2KYKDKinpcvGqlPHW636yc/fJ1/f0DqNefDgTqsxkxJbq0P7m09z9gAAAMClg6AOm8LDU9Sh3U2SpNLSIq1dN11/TRiua/o+Iy+vwPMz6N9niWu7BNxoNCopsY02bpqnZk2vkmTSxk3zlZzU1uoLhEYNe1oFYA8PP4v33brdLV/fMB06uFMLFv2qzp1uswi44WHJuv66N5S7b6v27tusXbvWa9zvr6t5s6vUtEmfs9rVpk2u1Kas+WrS5IrT2q5li35qmNFDu3avV27uVq1bN1PLV4zXVX2eUIB/pCTbZ9rrwsnJVf2ved6izMHR2fY8WvbXH3++pYYZ1ldRnM4MfH1C1bPHAxZlzs5up9EDAAAAcOnh0nfY5OToIh+fEPn4hCg4OFYdO9yi8vJSrd8w26qtj0+oysqKVVh4yKqusrJC+QX7LVZzr82hw3sk6aRfBKSktNfRowe1a/d67dy1XkePHrRYVb6Gq6unef41L8cTQqenh798fUIUG9tULVv008TJH6qystyijYPRUWFhSWrc6HJd0fsRNW/WV8uW/6HKyopT7s/JGP6+x9xocDjtbV1dPRUf11ytW12rawe+Ig8PX61cOVFS9WdRcGS/KqtOf34Gg8HqmHme8OVGjfCwZEVFpmvR4tFWdb4+IebP8lSMDo5WY564BgIAAADwb0NQR50YDNVBrvoycUtxcU1lNDpo5apJVnXr1s9QRUWpEhJanrR/k6lKq9dMlZdXoAIDomtt5+MdrPCwZG3YOFcbN85VZET9c3KGPy62mYxGB61ZO+Ok7fz8wlVVVWUV6C+U6lsLglVRUSpJSkxoqfLyUq2tZT9OupjcaWrZsr9ytmdq374tFuUJCa2Un79P27JXWG1jMplUWnbu5gAAAABcirj0HTZVVpWrqChfklRaWqg1a6epvLxU0dGNrNp6eQaoVcsBWrDwZzk4OCkpqY2MRgdlZ6/Q4iWj1TCjh8WK75JUUnpURUX5qqgo1cGDu7RqzRTtz92mXr0etFrx/UQpKe01a/ZISVLnTrfZbFNeXmKefw1HR+daL6s2GAxqkN5NS5eNU/361c/5HvfHG0qMb6mgoBi5uHrq0KHdWrx4tCLCUy7I5dk5OZnavGWxEuJbyMcnVJJJ2TkrtX3HKnX++17xkOB4NWrYSwsW/qzCwkOKjW0iD3df5Rfkat26mQoNTaz18WwyyeqYSZKbm5fNtQkC/COVmNBKq9dMtSiPj2uubduWa9q0/6lJkysUGZkmN1cvHTy4U6tWT1F6elfz49mqqqpsjslK8AAAAPg3I6jDph071uib7x6WVH3vsq9vmC7r9h9FhKfYbJ/R4DJ5ewVp5apJWr1mqkymKvn7hat9u5uUkmy9Ivuf46ufx+7o6CwvzwCFh6eoY/vB8qnDJfJxsU01d953MhiMNlcWl6QlS8dqydKxFmX1UzuddJGypKQ2WrxkjNasma7GjXopKjJdG7PmadGS0aqoKJOHu6/qRTdUs7O8P/1M+fmFy9HRWfMX/qzCo4fMl4137DBESUltzO1atRygwMBorV03XevWz5TJZJKPd5Di4pqddOG6svJi82d+vJtvHF5rcG7W7Gpt3rLEosxgMKhb1zu1bv0sbdg4V8tX/CmjwUE+PsFKSmqjqMh0c9tDh3ZZjeng4Kg7bvusTscEAAAAuBQZTLU95+kE/7lrxPmeCwDgX+i1l3+90FMAcJHLrbzQMwBwviSF/nWhp3BBcI86AAAAAAB2hEvfATuxKWuBZs/5xmadl1eArh3w8j88IwAAAAAXAkEdsBMx0Y0UEhxns85oPP3HuAHA+XbP/av048+7NOTmKA1/O92i7tHH1+rLEdt13bUR+viDDHP54iWH1OvKheraJUi//NDMYpvt24vUsNks83tfXyfVT/XU008mqU0rf3P5629mafyEfZozo535/Rtvb7aax+rVBerQdZ5WLu2oevXcrfo/3uS/Wql5M9uPpAQuVk88uEq//bLL/N7Xz0npDX30f88mK6V+9eNQk8Mm6KOvmqhbr2PrBM2YkqsvP96qtasLVFVpUkKyl264pZ6uuTbSaoxJf+7V9yNztH5NgUpLqxQW4aYmzX11063Rqt+geo2bMT/v1JMPrbba1tnFqNXZPczv9+wq1vtvZ2nOjAM6fLBMQcEu6tozRPcOTZCfv+VjdnO2FerT97dowew8HThQKj9/Z8UleKrfoAhdflWYHB2N5v2r4eHpoNh4T/3noXh162m9LtL/3t+id9/YpEeeTtbt91j+Tnb8PhgMUnCoi9p2CNSjzyQrINCl1mNZ8zkU5JfroxFNdMu1S+RgNOjLn5pbtPl+ZI6Gv7ZJf85op9Dwf37RYtgfgjpgJ5yd3S7IavIAcDYiIlw1ZuwevfpSqtzcqr9ULCmp1KgxuxUZ6WrV/rsfdurO26P13fc7tWdvicJCrduMHdVcKcleyjtYpnfe3aJBNyzT0gUdFBzsUus8XF2N+u6HnbrvnljFx3mcdM41/R/P39+pLrsLXHTadw7Ua+9Wf1l2ILdU776xSXfftEwzl3W22f7bL7P16nPrdce9cXrh9TQ5ORs1bVKunn98rbI2HNXjzx9bWPitlzdoxKfZuum2aD3waKLCI910MK9Ms6fv1zuvbtKXPx4Lo55ejpo4t4PFWAbDsT/vyCnStVcsUEych/77cUNF1nNX1sajeuulDZozY79+/rO1fP2qw/qqFYc1ZOBiJSZ76bnX6isuwVOStGZlvr4fsV1JKV5KSfM29/3auw3UvnOQjh6p0A8jc/TgHSs0ZnJbJada/jsw+qeduv2eOI3+cadVUD9+H6qqTNqw9oieeniVcveWWoXu2hgMBr02vIGu7DJXP32zXYNurle979uL9PZLG/X862mEdJgR1AEAwBlr2MBb23KK9Mf4vRrYP0KS9Mf4fYqMcFN0PctfOI8erdBvY/do+pQ22pdbph9+2qVHHoq36tPfz1khIS4KCXHR0AfjNea3PVq6/LAut3EGrEZCvIeCAp318qubNOIL208EObF/4N/A2dmooL+/5AoKdtEd98Xphr6LdPBAqfwDLf8e7NlVrDeGbdDgO2I09Klkc/mtd8fKycmgl59Zr55XhqphE19lLjukLz7apqdfStXNt8eY24ZHuim9oY9OXK/aYJB5HrYMe3KtnJyN+uqn5nL9+0u/8Eg31W/gre6tZmn465s07I10mUwmPfHgKsXEeejH31vJaDyW9mPiPHTF1eFWY3t7Oyko2EVBwS568PEkffNFjhbNy7MI6ovn56mkpFIPPJaosaN2afmSQ2rS3PIqm+P3ISTUVTfdFqP33tykkuJK85xPJSzCTU+/lKoXn1qntp0CFRnlpqeHrlbbjoHqOyCiTn3g34HF5AAAwFm58bpI/fDjsctrv/9hp264zvoXzrG/71FioqcSEzw1sH+4vv9hp9Uv1McrLq7UT39ftuvsfOpfWZ5/Nlm//7lXKzLzz2AvgEtfYWGFfh+9W9Gx7vI94VJyqfoy9vJyk279T6xV3bU31ZO7h4P+/G23JOnP3/bI3cNB1w+pZ3Msw/Gny0/h8KEyzZ15QNcPrmcVeIOCXXTlNeGa8PtemUwmrV9ToC1ZhbrtP7EWIb0uY1dUVGnUDzskSU5Olv+mjPpxp3r3DZeTk1FX9A3XqB93nnLerq5GVVVJFZV1eoiW2dUDI9W6XYCeeni1vvsqR1kbjurFN9NOqw9c+jijDgAAzsrA/uF68ZVN2r6jWJK0aMkhfflZI82dd9Ci3bff79TA/uGSpG5dAnXfkXLNm39Q7doGWLTrccUCGQ0GFRVXymSSGjX0Vsf2lm1saZjho75XhemFlzZq3OgWtbar6f94O7Mvq9O+AhebmVP3q3H8ZElSUVGlgkJc9L9vmtoMudu2FsrL21HBIda3pDg7GxUV7a7srUWSpOythYqKdjffCy5JIz7dpvffyjK/n72is7y8q28rOVJQYZ5HjaYt/fTFD82Vs61IJpMUn+hpcx/iEz2Uf7hcB/PKzOPHxh+7xSXvQKm6tTy2/sSjzybrhiHR5vdD78mUg9GgkpJKVVVJEVFu6tUn1Fx/9Ei5Jv25Vz//2VqS1KdfuK7vu1BPv5QqDw/bcSl7a6F+/HaH0hv6yNPzWJuasY5XVlaljl2DLMpeejtdvTvO0dKFB/XBF02srm4ACOoAAOCsBAa66LJuQfrxp50ymaTLugUpIMDybF3W5qNaviJf341sIklydDTq6qvC9O33O62C+pefNVJSoqfWrz+i51/cqI/ez7A6+1WbZ55IVMt2czR9xn4F1fKL75efNVJyLYEAuNS0bOuvF16vPlubn1+uH0du1x03LNWvf7VRRNS5vR+633WR6tIjWCuXH9b/3bdKx18w4+HpoN8mt7Vo7+pqefb8ZFfYnIyvn7PGTq3u+6Z+i1ReVmVR/+QLqWrTIUA7cor02vMb9MzLqeb73aXqqwPqxbib72tPTfdWRKSb/hq3RwOujzK3q/myoarKpNLSKjVt4aeX32lgc6zjvf3yRlWecNY9INBF195UT9Mm7rNafA6QCOoAAOAcuOH6SD325DpJ0luv17eq//b7naqoMCk1Y4a5zGQyycXFqDcL6svH+9hibpHhboqP81B8nIcqKk26achyzZ/dTi4up74HNDbWQzffGKVhL2/SB++m22wTGe6muFMsOAdcKtzcHBQde+znPe0dHzVLmqJfvt+hh59IsmgbG+ehIwUV2re3RCEnLPRYVlalHdlFatmm+gkMMXEeWrb4kMrLq8xfpHn7OMnbx0l795RYzcNoNFjM43j1YtxlMEhbsgrV3Ub9lqxC+fg6yT/AWdGx7pKkbVsKzavKOzgc69vRwfpLvaBgF0XHeig61kOvveukO25Yqr9mtzev1j7qx53K2nhU9SMnmrepqjJp9E87LYJ6zZcNRqNBQcEuNu9LrxnreB6ejirIL7dq6+hokINj3W8RwL8L96gDAICz1q1LkMrLqlRRXqWunS0v8ayoqNLPv+zSy8NSNHt6W/Nrzox2Cg1x1egxe2rt96orQ+XoaNCXI7bXeS6PPZKgLVsKNfq32vsF/q0MBslglEpLKq3qLusdKicng0Z8us2q7qdvtquoqFJXXF19+0rvvmEqKqzUDyPr/nezNn7+zmrbIVA/fJ2jkmLLee3PLdUfY3arV59QGQwG1W/grbgED335yTZVVZ3+GfiMxr5Kz/DRJ+9ukSRtXH9Ea1bm69vRLTV2alvz69vRLZW59LC2ZB01b1vzZUNUtHudF48DzhRn1AEAwFlzcDBo4bz25j8fb9Lk/TqcX64bb4i0OHMuSVdeEaLvftipW0+yINWdt0frjbc2a8jN9eTufupfjoODXXTP3TH64GPrsCFJBw+Vad++UosyHx9Hq8twgUtBWVmV9udW/7wXHC7XdyNyVFRYqc6XBVu1DY9006PPJOuNYRvk4uKgPv3D5eRk0LSJufrv65t0692xatjEV5LUuJmfbr07Vm8M26DdO4vV/fIQhYW7aX9uiUb9sFMGg2Q87pSgySTzPI4XEOgso9GgZ1+tr0FXLtBt1y3RQ48nKbKem/nxbCFhLuaz/waDQa+920C3XLtE1/VZqDvvj1N8oqcqyqu0ZOEhHcwrs/o36EQ33xGj+25brjvujdOoH3Yoo7GPmrf2t2rXoJGPRv24U48/l2KjF+D8IqgDAIBzwtvL9rPIv/1hhzp2CLQK6ZLU54pQvf/hNq1ZWyBvL9u/llx3baRefi1Ln3+Zowfvt362sS333Rurr77erpKSKqu6vv2XWJV98b+G6vf3mULgUjJnxgG1azhdUvWl23EJnnrvs8Zq2cb2Ao1D7oxVVLS7vvpkm775IluVVSYlJHnqhdfT1G9QpEXbx59PUYPGPvrx6+0a/dNOlRRXKiDIRc1a+unnP1vL87h/E44eqTDP43hzV3ZRULCLYuI8NHpiW33wdpYeumuF8g+XKzDIRd16hejeoQkW95Q3auqnMZPa6n/vb9GLT63TgdxSubk7KKW+l54clqJ+10VajXO8Dl2qH4v2yXtbNOH3PbrjPtv/rlzWO1QjPt2moU8m2awHzieDqY6rNvznrhHney4AgH+h117+9UJPAcBFLtf6Km4Al4ik0L8u9BQuCO5RBwAAAADAjhDUAQAAAACwIwR1AAAAAADsCEEdAAAAAAA7QlAHAAAAAMCOENQBAAAAALAjBHUAAAAAAOwIQR0AAAAAADtCUAcAAAAAwI4Q1AEAAAAAsCMEdQAAAAAA7AhBHQAAAAAAO0JQBwAAAADAjhDUAQAAAACwIwR1AAAAAADsCEEdAAAAAAA7QlAHAAAAAMCOENQBAAAAALAjBHUAAAAAAOwIQR0AAAAAADtCUAcAAAAAwI4Q1AEAAAAAsCMEdQAAAAAA7AhBHQAAAAAAO0JQBwAAAADAjhDUAQAAAACwIwR1AAAAAADsCEEdAAAAAAA7QlAHAAAAAMCOENQBAAAAALAjBHUAAAAAAOwIQR0AAAAAADtCUAcAAAAAwI4Q1AEAAAAAsCMEdQAAAAAA7AhBHQAAAAAAO0JQBwAAAADAjhDUAQAAAACwIwR1AAAAAADsCEEdAAAAAAA7QlAHAAAAAMCOENQBAAAAALAjBHUAAAAAAOwIQR0AAAAAADtCUAcAAAAAwI4Q1AEAAAAAsCMEdQAAAAAA7AhBHQAAAAAAO0JQBwAAAADAjhDUAQAAAACwIwR1AAAAAADsCEEdAAAAAAA7QlAHAAAAAMCOENQBAAAAALAjBHUAAAAAAOwIQR0AAAAAADtCUAcAAAAAwI4Q1AEAAAAAsCMEdQAAAAAA7AhBHQAAAAAAO0JQBwAAAADAjhDUAQAAAACwIwR1AAAAAADsCEEdAAAAAAA7QlAHAAAAAMCOENQBAAAAALAjBHUAAAAAAOwIQR0AAAAAADtCUAcAAAAAwI4Q1AEAAAAAsCMEdQAAAAAA7AhBHQAAAAAAO0JQBwAAAADAjhDUAQAAAACwIwR1AAAAAADsCEEdAAAAAAA7QlAHAAAAAMCOENQBAAAAALAjBHUAAAAAAOwIQR0AAAAAADtCUAcAAAAAwI4Q1AEAAAAAsCMEdQAAAAAA7AhBHQAAAAAAO+JY14aFYc7ncx4AAAAAAECcUQcAAAAAwK4Q1AEAAAAAsCMEdQAAAAAA7AhBHQAAAAAAO0JQBwAAAADAjhDUAQAAAACwIwR1AAAAAADsCEEdAAAAAAA7QlAHAAAAAMCOENQBAAAAALAjjhd6AgCAf7ebp19/oacAwM44Fhgu9BQA2Ikxd1zoGVwYnFEHAAAAAMCOENQBAAAAALAjBHUAAAAAAOwIQR0AAAAAADtCUAcAAAAAwI4Q1AEAAAAAsCMEdQAAAAAA7AhBHQAAAAAAO0JQBwAAAADAjhDUAQAAAACwIwR1AAAAAADsCEEdAAAAAAA7QlAHAAAAAMCOENQBAAAAALAjBHUAAAAAAOwIQR0AAAAAADtCUAcAAAAAwI4Q1AEAAAAAsCMEdQAAAAAA7AhBHQAAAAAAO0JQBwAAAADAjhDUAQAAAACwIwR1AAAAAADsCEEdAAAAAAA7QlAHAAAAAMCOENQBAAAAALAjBHUAAAAAAOwIQR0AAAAAADtCUAcAAAAAwI4Q1AEAAAAAsCMEdQAAAAAA7AhBHQAAAAAAO0JQBwAAAADAjhDUAQAAAACwIwR1AAAAAP/f3n3HV10f+h9/n+ycLLIHORmQmMUUIey9BBVUxOu22lr1V6u29TqqgkqtdVRtve1PbX+3daAilIqCMgQSSJA9AwkBTAIJCQQIZJJ17h+Rg8eTEOCnl4/wej4eeTzId58vj5Pkdb4LgEEIdQAAAAAADEKoAwAAAABgEEIdAAAAAACDEOoAAAAAABiEUAcAAAAAwCCEOgAAAAAABiHUAQAAAAAwCKEOAAAAAIBBCHUAAAAAAAxCqAMAAAAAYBBCHQAAAAAAgxDqAAAAAAAYhFAHAAAAAMAghDoAAAAAAAYh1AEAAAAAMAihDgAAAACAQQh1AAAAAAAMQqgDAAAAAGAQQh0AAAAAAIMQ6gAAAAAAGIRQBwAAAADAIIQ6AAAAAAAGIdQBAAAAADAIoQ4AAAAAgEEIdQAAAAAADEKoAwAAAABgEEIdAAAAAACDEOoAAAAAABiEUAcAAAAAwCCEOgAAAAAABiHUAQAAAAAwCKEOAAAAAIBBCHUAAAAAAAxCqAMAAAAAYBBCHQAAAAAAgxDqAAAAAAAYhFAHAAAAAMAghDoAAAAAAAYh1AEAAAAAMAihDgAAAACAQQh1AAAAAAAMQqgDAAAAAGAQQh0AAAAAAIMQ6gAAAAAAGIRQBwAAAADAIIQ6AAAAAAAGIdQBAAAAADAIoQ4AAAAAgEEIdQAAAAAADEKoAwAAAABgEEIdAAAAAACDEOoAAAAAABiEUAcAAAAAwCCEOgAAAAAABiHUAQAAAAAwCKEOAAAAAIBBCHUAAAAAAAxCqAMAAAAAYBBCHQAAAAAAgxDqAAAAAAAYhFAHAAAAAMAghDoAAAAAAAYh1AEAAAAAMAihDgAAAACAQQh1AAAAAAAMQqgDAAAAAGAQQh0AAAAAAIMQ6gAAAAAAGIRQBwAAAADAIIQ6AAAAAAAGIdQBAAAAADAIoQ4AAAAAgEEIdQAAAAAADOJxoTcA+CHk/PtN7du6ymV4TPeeGnPro5KkoweLtH31Ah0qzldjQ738gkIUGZ+mjCGTFRga7Zhn75ZsFaxfqqpDpbK4uSkkOkEZgycr9rK+jmnKi3Zq6T+f142PvikvH792t+nA7s3Ky12ooweLZG9tVZeIrkrpP07d+wx3mbZ45zoVrF+mY+VFamlukl9QqMJtlyl1wHg1nazX0ndf0Pg7nlBEXIpjnqbGBn3218cVl9Zf/cbffN77DgAAAMCFRajjohWT1EuDp9zjNMzN3VNSWzRnzXldMd17auh198s/OEINtSdUsnOdtqyYq+HTHpAkbVwyW/nrlqrP6Gkaen0/2VtatG9bjlZ++EddMfE2pQ4Yf1bbkr92iTYsflcZQ65S5uSfyM3dXQfyN+mrz/5bVYcOOIX1pqUfaueaRUrNHK/eI6+Tf5cwNdRWq3TPVm3+8iONufVRpQ4Yp9x/v6nJ9z4vTy8fx3zunl7qM3ra97H7AAAAAFwghDouWm7unvL17+IyvLnppHI/eUtdk3tr5I0PO4YHBEcoPDZJjQ21kqTDB/Zo55pF6j/xdqVmng7yvmOmq6W5SRsXvy9bSj/5BYWecTtqjx/RxiXvKzVzovqOudExPH3wJLm5e2j9F+8oLn2AwmOTdPjAHuXlfqYrJt6mtMwJjmn9gsIUGpMou93u2IayPdu0edlHGjDpDpV/vVN7Nq/UxLtmyN3D67z2FwAAAAAzcI06Ljlle7bpZF21MgZf1e74U6euF23PlYeXj5KvGO0yTfrgSWptbVHJrvWdrq945zq1trYoffAkl3HJV4yWh5ePinascVpnSv+x7S7LYrFIktw9vDTk2ntVuHG59udvVO6Ct9Vj6DUKjUnsdHsAAAAAmI0j6rhole7erA+ev9tpWI9h18jNzV2SFBgWc8b5TxwtV0BwhNzdXd8m1oBgeXr76sSRg51uR/WRcnl6W2UNCHYZ5+7uoYDgCJ04Uu60zlPbKEk71yzS1hXzHN9f/6s/y8vHqtCYbuox9BplzXlNwVEJ6jl8SqfbAgAAAMB8hDouWpGJ6cqcfKfTMG9ffxVuXHFhNug8JfUdodiUy1V5YK9y5v9Vkt0xrueIqdqWPV89hl7tFPcAAAAAfrwIdVy0PDy9FRgS5TI8MLRt2InKMoXbkjucPzAkSodKdqulpdnlqHpd9TE1nax3ujt8RwJCo9R0sk511cdcjqq3tDSr+miFIhPS2qb9Zp2tLc1y+2adXj5+8vLxU92Joy7LPhXnFjeuYgEuVQ1VVSqcv0CHNm9Rw9Fj8goMVFBCnBKvnKjwnhmSpKMFu1U4/xMdK9yjlsYm+UVFyjZyuLpdOcHp58en/3Gb3Dw9NeqPL8oaHuYYvu7lV+Vptarv/T+XJJ08cUIFc+apYvNWNR4/Lk8/PwXGx+my66cqJOUySdKyXzys+spKl+1NvWm6kqdcrbpDh/XlL3/lGO7p56eAuFilTr9BoWkpKlu7Xhtf+7PG/tdr8g0JcVnO8od+o8jL+yrj9lvaXuPuQuXMeE4RfXop89HfSJI2/+VNHche3eG+8w0L09g3XlXuM79TYEK8etxxq2Nc9f4DKpg3X0fydqm5vl6+YWGKGTxQSVOukoe3t2O6U69z6HMzFJyc5Bi+45/v6URRsQbP+G2H6wfOVcPxKhUs+kTl27eooeqYvAMCFWSLV/cxExSR1kOLH39I3cdMVNLYiS7z1lYe1pInHtaop36nLrZ4x/eyWDTxhdflG3z6fdZQdUxfPPag7K2tGv/8q/ILC3daVs5rf9ChXTs08vGZCk7ofnpZZ3D5nffIGhqm1a883+74K196Qz5BXTrdB031ddr9xWcq27RedUcq5Wm1KjAmVokjxyqm7xWyWCxa9fIsBdni1evG25zmLc7N1vaP3tNVr7/lNLylsVGf/+cDslgsmvjin+Xu6ek0fvHjD6nuSKVGPDZTId1Ov8+3ffSuju8v1rDfPOm0fYVLFqps0wbVVh6Su5e3/MLC1bVfphKGjZKXX9sllqtenqXK3fkury9h+Gj1vfWuTvcDLn6EOi450d17ytsaoLzcz5xuJndKY0OtvHz8lNBjkPLXLVHhhuVON5OTpJ25C+Xm5q64tP6dri8+vb82L/tQO3MX6YoJtziN273hSzU3nVRCj0GSpMQeg1SwbokK1i9T2kDXX7IA8G11hw4rZ8Zz8vCzKu2WmxRoi5W9pUWHtm3X9v/+p0b/8UUdXLdBG19/Q7YRwzToqSfkabXq8I487Xr/Qx3bXah+Dz3guP/FKQUfz3NEeXs2/PFPam1uVt/775E1IkInjx9X5Y48NVbXOE2XcsP1ihsz0mmYh4+P0/cDf/uYAmxd1VhdrcL5C7TuxVc0+tWXFNWvr7wC/HUga7WSr73GaZ4ju/JVW16huFEjHMP2r8hS4sTxKlmRpYajx+QTEqwed96mtJtP38Rz6b0PqM+9P1N4n16SOv6Q81jhHq2Z9YLCemZowKO/lndQkKr27lXeux+ockeeBj/9hNw8Tv8J5ebpqZ2zP9SQGU+2uzzg+1BbeVjZLz4rT1+relx/kwJjbbK3tKgib5u2zv6nxj330nkt17dLiEq+Wq2UK0+/z4rXrJJPl2DVHz3iMn3dkUod3Vuo7qPGqTgnW8EJ3WUNCdWVL73hmKZwySJV5G3T0Icfcwzz9LXq6Nd7JEljn3tJnj6+Tsv1DgjsdFsb62qV/eJzaq6vU9qUaQpO6C6Lu5sqd+crb94HCk9Nl5e1/cfknknppnUKjOkqu106uGWjYvsPdJnGzdNTO+Z9qOGPdPw+b6ytUfaLz6qpvl7pU6apS3yiPH2tqi4/qJLcLB1Yl6tuo8Y5pk8YNkpp11zvtAx3L24KjDaEOi5arS1Nqq+pchpmcXOXjzVAg67+qbI//pNWfPCKUjMnKCAkUifrqlWUt1a1x49o+LRfKNyWrNTMCdq49AO1tjTLltpPra1tj2fLX7tYV0y4zeWO78cq9svT2/kXT0hUvC4fd5M2Lnlf7h6e6tZ7qNzc3LW/YKM2f/mx0gdNUnhs26ez4bZkpQ+apI1LZqv2eKXi0vrLGhiq+poq7dmcJckifecPagCXru3/7x+SRRo2a6ZTAAfYYhU3criaGxq09e2/K7JfX/W+5/Q9O+JHj5R3UKDWv/SqytasVdfBp/8oTZwwTnsXfq7uV09SoM3mss6m2lodzS/QoKefUFh629lA1vAwBSd1d5nWw9dHPl26nPE1eAX4y6dLF/l06aLkqdeoLPcrHduzV1FXXK7YYUO1P2uVS6iXrMhSl6TuCrDFSpKaGxpUumathj//rE5WVTnm8bRa5Wm1Om+Tn/WM22S327Xlzb/Jv2uM+v/qQUfMW8PD5BcdpezHntK+hV8oacrpG5LGjxml4mXLVbF5iyL79jnj6wXO19bZ/5AkjXziGXl4n36/B8bEKn7IiA7m6lzc4KEqzsl2CvWS3GzFDRqmgoX/dpm+ODdbUb36KHHEWGW9MFM9b7hF7l5eTkfDPby95ebm1uERcu+AwPMK6p3z56juyGGNe+5l+XY5fZZiQGS0bP0Hye07R8LPVvHqLNkyh3zz75XthnrisFH6Onu5yrdvUVTPPu0uJ2/+HNUdPeKyfdbQMEVm9HQ8veeU7+434NsIdVy0yvZs09xXfuE0LDA0WlN+8ZJsqf008e4Z2rH6U62a9xc1nayXX1CIohLSnZ5D3n/ibQqOjFPB+mXasuJjWSxuColO0IgbH5Yt5XKXdS75xyyn7y0WN9369DtKGzhR/sHh2pm7SPlrF8tub1VQeKwyJ9+ppL7Ov1z7jb9ZoV27afeGL7Vnc7Zamk7Kxz9IEfGpmnj3DHl5O//RCeDS1FhTo0Nbtyv1xmkuR6mltlPJD67boKbqGnW/yvWpE1H9LpdfdJRKc9c4hXpwSrIiD5Zr1+w5ynz01y7zufv4yN3HR+XrNyo4OcnlFNHz1dLY6DhN/dTR6rhRI7Rv4ec6sitfoWmpktqi/ODa9Y5T3iWpbM1a+cdEyz8mWrFDh2jHO+8paerVLmcKnI0TRcWqOVCqyx+43+WIe1B8vMJ6ZKg0d41TqFsjwhU/drTyP5ijiN69uBwJ37vG2hpV5G1T+tQbnCL9lPOJ3lOie1+ur7OWq7KwQGHJKaosLFBjXZ2ie/d1CXW73a6S3Gz1vukOBUTHyC8iUqUb1ylu0NDzXv/Zsre26sD6r2QbMNgpgk9p7+fg2ag5VKGj+/Yo876HJNm1bc57qjtSKWtomNN01rAIJQ4frbz5cxSZ4fo+t7e2qnTDV7JlDml3+ySd188kXLoIdVyUhkz9uYZM7fi0TUkKjemmEdMf7HRZSX1HuMT0d0UlpOu2Ge+dcRpbSj/ZUvp1uj5JSsgYqIQM109z29PZegFcnGrLKyS7Xf4xHT/BovZg2xMlArq2P41/TIxjmm9Lu2m6sv7zCR3ZVaDQtBSncW7u7upz3z3a9tbfVbxsuYISExSalqqugwcqMD7Oadpdsz9S/kdznYZlPvaI0zJXP/2sLBaLWhobJbtdQd0SFdYjvW27Y7sqODlJJSuyHKFetmatJLvThwslK7IUO7TtaFh4n15q/r/1OrIzX2EZaR3um47UfLM//DvYZwFdY1RcsNtlePJ1U7Q/K1sHVufKNvyHjxZcWmoOtb3fA6I6vzfOubK4e8iWOUTFOVkKS05RcU6WbJmDZWnnqTeHd+1Qc2OjIjLaLh9pm2/lOYf6F4/+0ul7a0iYxj7zhzPO01hTraa6WgVEnfmpPafsW7lMRatXOg2zt7S6fLhYnJOlyB69HNeOR6b3UnFOlssp6ZKUMnmqinN/pf1rc11e88maajXV1Skg0vn/aMWsJ1Vd0faUoOhefdX/Z6cPIrW3jX1vvctxdB+XNkIdAIAfo++cQvk9TSqpLZBjhw/Vrg8+0tBnn3YZH5PZX5F9e+tofoGOFe7VoS1btffThep9z92yjRzumK771ZNkGzHcaV6fEOcjTf0e/D/yj4lR9f4D2jX7Q/W572dO13/bRg5X3jvvq+dPbpeHr69KVmYrOnOAPHzbLjOqKTuoqr371P/XbR+8urm7K2ZQpkpWZJ1XqDuc407zDgxU96smqeDjeU4fIgDfi3N9E5+j+CEjlP2HZ5Rx7XSVbVynEY/NUGtrq8t0xTlZir0iU27ubTezjR0wSDvmfqCaQxXyj4g86/UNf+QppyPgbu18KPBd57oHbJmDlTLJ+dG1ZZs2aPfnC04vs7VVJWtWOd10zjZwiHbMna3Uq651OWruHRCo5PGTtWvBvHZPj29P5n0PqbWlWXnzPlJLY1On2+gdGHRWy8XFj1AHAOBHyC86SrJYVFNWduZpJNWUljruxv5tNaVl8o9t/+hUyrTrtPzhR3Rw/YZ2x7t7eSm8V0+F9+qpy66fqq1v/k0Fc//lFOpeAQHyizrzH+++oaHyj46Sf3SU7K0t2vDK6xrx0u8dR726Dh6ovHfeV9matQpJS9Wxgt1K+4/pjvlLVqyUvaVFS+87fYTObrfLzdNTTXW3u1yj3hn/b/ZZdWmZghITXMZXl5Y5pvmubpOvVNGSL1W0ZNk5rRPojH9k2/u9uvzgD7L8oFib/KOitf7t/1JAdIwCu9pUtb/YaZrG2hqVbd6o1pZmfZ31pWO4vbVVxTlZyrh2+ncX2yFrWPg5n67v7R8gT6tV1eUd/8z7Nk9fq/wjnN+r3oHON6yryNumhqpjWv/2G1r/9unh9tZWHc7PU0R6T5flJo29UvtWLtO+lc7vc8f2VTj/H506hd7Dx0dNdXWdbiNwCqEOAMCPkJe/v8J79VTRkmVKnDje5frMptpahffqIU9/f+1d+LlLqJdv2KTa8nKlTHc9vVOSfMNClThhnPI//Fh+kRGdbo9/bFcd3LDx/F+QpOjMASqY8y8VLVmm7pOvlCR5+PoqZuAAlazMVm3FIflFRzlOnW9tadGB7Byl33azwnv1cFrW+pdfU2nOGiWMG3NO2xCYEC//mBjtW/SFug4e6HRE7XhxsSp35Dl9UPBtHj4+Sr5uinbPna/Ifn3Pab3AmXj5+Ssyvaf2rViq7qPHu1yn3lhX+/91nbrUdlR96+x/qM8tP2l3/P61ufINDtbA+52fmFOxc7v2LP1c6VOm/aD3Z7C4uSm2/yCVfLVaqVdf53IdeHNDg9w8PR1H+89G8eosxfYf6HJUu2DRJypandVuqHv4+Ch18lTt+vRfiu59+n5FFjc3de2Xqf1rc5R61bUdXqcOnC3udgIAwI9Uz7vukL21VauenKmytetVc7Bc1aWl2vf5Yq1+6ll5+Pio109/oooNm7T1rb/rRHGJ6g4dVsnyldry17cUndlfMYMyO1x+0tSr1XCsSoe35zmGNVZXK/e553VgVc43yzuksq/Wau+ChYrq53yTzeb6BjVUVTl9NdXVd7g+i8WixInjtGfBZ2o+edIx3DZqhI7tLlTxsuWKG3n6niEVmzarqbZWcaNGKNBmc/qKHtBfJSuyznmfWiwW9f753aopLdWGV/+kY3v2qq6yUmVfrdW6F19VcHKSEidN6HD++DGj5GH1VWnOmnNeN3AmvW++U/bWVq18foZKN65TTUW5Thws1d4vFyvrhWcc09VXHVXV/mKnr8ba2k6XnzBslCa98lfFDx3Z7vji1SsV02+AArvanL4ShoxUY021KnZsPevXcrL6hBqOVzl9tTY3dzpf+tQb5Bscqqzfz1DJmlU6UVaqmopyFa3O0vJZv1XzyYZz2oaD2zYpbtAwl9dkGzhMB7dsVGNtTbvzJgwbJU9fX+1fl+u8fddOl2+XYK18/mkVrc7S8QMlqjlUobLN63V0X6HLBxktjY0u++Fs/q9waeCIOgAAP1J+kREa/vtZKpz/iXa+O1snq6rkFRigoMRE9bz7TklSzMAB8g4KUuG/P1HOzFlqbWqSX1Skkq+9Rt0mTTzjXYi9/P2VdM1k5X/4sWOYu4+PgpO6a9+iL1RbcUj2lmb5hIYqbvRIl8eoFXw8TwUfz3MaFj92tHr9tP0jdpIUO2KY8j+aq6LFS5V0Tdud1UNTU+QXE6268grFfutGbftXZCmsZ0a7p7dHZ/bX3k8X6kRxictN7joTknKZhj43U7vnztfaF15Wc329fMNCZRs+VElTrz7jne7dPDyUOn2aNv35L+e0TqAzfuERGv3kLBUsWqAdc2er4XiVvPwD1CU+UX1uudMx3Z4li7RnySKnefvdda9Ck1J0Jm7u7vIOCGh33LHir3X8QIn63n63yzhPq1XhqRkqyslSVK+zO5Nk2VOPuAwb8dhMhXRLOuN8Xn7+GvnYTO3+4lPlL/xE9Ucr5Wn1U2BXm3pcf5M8fc/+UpeSNavl4e2t8NQMl3ERaRly9/LU/q9y1H2M6wdzbh4eSpsyTRv+5vw+9/YP0MjHn9XuxZ+qcMlC1VUelsVikV9klLpeMVBJYyc6TV+0aoWKVq1wXndGTw158NGzfh24eFns332gXwdun/n+D70tAIBLUFXaD3uTJAA/Ph4neIwVgDb/+tktnU90EeLUdwAAAAAADMKp7wAAAAAuuAUPuJ5af8rgXz6isOTU/8WtAS4sQh0AAADABTf6qd91OM63S8j/4pYAFx6hDgAAAOCC45niwGlcow4AAAAAgEEIdQAAAAAADEKoAwAAAABgEEIdAAAAAACDEOoAAAAAABiEUAcAAAAAwCCEOgAAAAAABiHUAQAAAAAwCKEOAAAAAIBBCHUAAAAAAAxCqAMAAAAAYBBCHQAAAAAAgxDqAAAAAAAYhFAHAAAAAMAghDoAAAAAAAYh1AEAAAAAMAihDgAAAACAQQh1AAAAAAAMQqgDAAAAAGAQQh0AAAAAAIMQ6gAAAAAAGIRQBwAAAADAIIQ6AAAAAAAGIdQBAAAAADAIoQ4AAAAAgEEIdQAAAAAADEKoAwAAAABgEEIdAAAAAACDEOoAAAAAABiEUAcAAAAAwCCEOgAAAAAABiHUAQAAAAAwCKEOAAAAAIBBCHUAAAAAAAxCqAMAAAAAYBBCHQAAAAAAgxDqAAAAAAAYhFAHAAAAAMAghDoAAAAAAAYh1AEAAAAAMAihDgAAAACAQQh1AAAAAAAMQqgDAAAAAGAQQh0AAAAAAIMQ6gAAAAAAGIRQBwAAAADAIIQ6AAAAAAAGIdQBAAAAADAIoQ4AAAAAgEEIdQAAAAAADEKoAwAAAABgEEIdAAAAAACDEOoAAAAAABiEUAcAAAAAwCCEOgAAAAAABiHUAQAAAAAwCKEOAAAAAIBBCHUAAAAAAAxCqAMAAAAAYBBCHQAAAAAAgxDqAAAAAAAYhFAHAAAAAMAghDoAAAAAAAYh1AEAAAAAMAihDgAAAACAQQh1AAAAAAAMQqgDAAAAAGAQQh0AAAAAAIMQ6gAAAAAAGIRQBwAAAADAIIQ6AAAAAAAGIdQBAAAAADAIoQ4AAAAAgEEIdQAAAAAADEKoAwAAAABgEEIdAAAAAACDEOoAAAAAABiEUAcAAAAAwCCEOgAAAAAABiHUAQAAAAAwCKEOAAAAAIBBCHUAAAAAAAxCqAMAAAAAYBBCHQAAAAAAgxDqAAAAAAAYhFAHAAAAAMAghDoAAAAAAAYh1AEAAAAAMAihDgAAAACAQQh1AAAAAAAMQqgDAAAAAGAQQh0AAAAAAIMQ6gAAAAAAGIRQBwAAAADAIIQ6AAAAAAAGIdQBAAAAADAIoQ4AAAAAgEEIdQAAAAAADEKoAwAAAABgEEIdAAAAAACDEOoAAAAAABiEUAcAAAAAwCCEOgAAAAAABiHUAQAAAAAwCKEOAAAAAIBBCHUAAAAAAAxCqAMAAAAAYBBCHQAAAAAAgxDqAAAAAAAYhFAHAAAAAMAgFrvdbr/QGwEAAAAAANpwRB0AAAAAAIMQ6gAAAAAAGIRQBwAAAADAIIQ6AAAAAAAGIdQBAAAAADAIoQ4AAAAAgEEIdQAAAAAADEKoAwAAAABgEEIdAAAAAACD/A+rVWmAi9paQwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import squarify\n", + "\n", + "df = stats_df\n", + "\n", + "# Column name that might contain pipe-delimited values\n", + "y_colname = 'literature_topics'\n", + "\n", + "# Split the pipe-delimited values into individual rows\n", + "df_split = df.assign(**{y_colname: df[y_colname].str.split('|')}).explode(y_colname)\n", + "\n", + "# Count occurrences of each topic\n", + "topic_counts = df_split[y_colname].value_counts().reset_index()\n", + "topic_counts.columns = ['literature_topics', 'count']\n", + "\n", + "# Plotting the treemap\n", + "plt.figure(figsize=(12, 8))\n", + "squarify.plot(sizes=topic_counts['count'], label=topic_counts['literature_topics'], alpha=0.8)\n", + "plt.axis('off')\n", + "plt.title('Treemap of Literature Topics')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "c0bc7c82", "metadata": {}, "outputs": [ { @@ -1307,9 +1347,9 @@ } }, "text/html": [ - "