-
Notifications
You must be signed in to change notification settings - Fork 23
/
bip39.rs
519 lines (449 loc) · 17.2 KB
/
bip39.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
// Copyright 2024 IOTA Stiftung
// SPDX-License-Identifier: Apache-2.0
// https://en.bitcoin.it/wiki/BIP_0039
// https://doc.rust-lang.org/std/primitive.str.html
// "String slices are always valid UTF-8."
use alloc::borrow::{Borrow, ToOwned};
use alloc::string::{String, ToString};
use alloc::vec::Vec;
use core::convert::TryFrom;
use core::fmt;
use core::ops::Deref;
use unicode_normalization::{is_nfkd, UnicodeNormalization};
use zeroize::{Zeroize, ZeroizeOnDrop, Zeroizing};
/// BIP39 coded error.
#[derive(Debug, PartialEq, Eq)]
pub enum Error {
/// Mnemonic entropy amount is invalid (should be 128 or 160 or 192 or 224 or 256 bits)
InvalidEntropyCount(usize),
/// Mnemonic contains a word not present in word list
NoSuchWord(String),
/// Mnemonic corrupted, checksum mismatch
ChecksumMismatch,
/// Mnemonic is not in NFKD form
UnnormalizedMnemonic,
/// Passphrase is not in NFKD form
UnnormalizedPassphrase,
/// Word list contains unnormalized word or word with a separator
BadWordlistWord(String),
/// Word list contains duplicate words
UnsortedWordlist,
/// Separator is not in NFKD form
BadSeparator,
}
/// Reference to a normalized (unicode NFKD) mnemonic.
#[repr(transparent)]
pub struct MnemonicRef(str);
impl Deref for MnemonicRef {
type Target = str;
fn deref(&self) -> &str {
&self.0
}
}
impl ToOwned for MnemonicRef {
type Owned = Mnemonic;
fn to_owned(&self) -> Mnemonic {
Mnemonic(self.deref().to_owned())
}
}
impl<'a> TryFrom<&'a str> for &'a MnemonicRef {
type Error = Error;
fn try_from(mnemonic_str: &'a str) -> Result<Self, Error> {
if is_nfkd(mnemonic_str) {
// SAFETY: MnemonicRef is represented exactly as str due to repr(transparent)
Ok(unsafe { core::mem::transmute::<&str, Self>(mnemonic_str) })
} else {
Err(Error::UnnormalizedMnemonic)
}
}
}
/// Owned normalized (unicode NFKD) mnemonic.
///
/// Mnemonic is the encoding of secret entropy using words from a given word list.
/// Mnemonic is used to derive a seed which serves as a master key.
/// If mnemonic is leaked then the seed is compromised (unless a strong passphrase is used).
/// Mnemonic should be kept secret on analog media.
/// Mnemonic should be verified against a given word list before deriving a seed from it.
#[derive(Clone, Zeroize, ZeroizeOnDrop)]
pub struct Mnemonic(String);
impl Deref for Mnemonic {
type Target = MnemonicRef;
fn deref(&self) -> &MnemonicRef {
// SAFETY: MnemonicRef is represented exactly as str due to repr(transparent)
unsafe { core::mem::transmute(self.0.as_str()) }
}
}
impl Borrow<MnemonicRef> for Mnemonic {
fn borrow(&self) -> &MnemonicRef {
self
}
}
/// Normalize the input string and use it as mnemonic.
/// The resulting mnemonic should be verified against a given word list before deriving a seed from it.
impl From<String> for Mnemonic {
fn from(mut unnormalized_mnemonic: String) -> Self {
let mnemonic = Self(unnormalized_mnemonic.chars().nfkd().collect());
unnormalized_mnemonic.zeroize();
mnemonic
}
}
/// Normalize the input string and use it as mnemonic.
/// The resulting mnemonic should be verified against a given word list before deriving a seed from it.
/// If the input is guaranteed to be normalized then consider using `MnemonicRef`.
/// The input contains secret data and should be handled accordingly.
impl From<&str> for Mnemonic {
fn from(unnormalized_mnemonic: &str) -> Self {
Self(unnormalized_mnemonic.chars().nfkd().collect())
}
}
/// Normalize the input string and use it as mnemonic.
/// The resulting mnemonic should be verified against a given word list before deriving a seed from it.
impl From<Zeroizing<String>> for Mnemonic {
fn from(unnormalized_mnemonic: Zeroizing<String>) -> Self {
Self(unnormalized_mnemonic.chars().nfkd().collect())
}
}
/// Join the input words with the space character (U+0020) and normalize into a mnemonic.
/// The resulting mnemonic should be verified against a given word list before deriving a seed from it.
///
/// Note, the initial word list could have had a separator different from the space. An incorrect separator will result
/// in a different mnemonic (and seed).
impl From<Vec<String>> for Mnemonic {
fn from(mut words: Vec<String>) -> Self {
let mnemonic = words.join(" ").into();
words.zeroize();
mnemonic
}
}
macro_rules! impl_from_words {
($n:literal) => {
/// Join the input words with the space character (U+0020) and normalize into a mnemonic.
/// The resulting mnemonic should be verified against a given word list before deriving a seed from it.
///
/// Note, the initial word list could have had a separator different from the space. An incorrect separator will
/// result in a different mnemonic (and seed).
impl<'a> From<&'a [&'a str; $n]> for Mnemonic {
fn from(words: &'a [&'a str; $n]) -> Self {
words.join(" ").into()
}
}
};
}
impl_from_words!(12);
impl_from_words!(15);
impl_from_words!(18);
impl_from_words!(21);
impl_from_words!(24);
impl AsRef<str> for Mnemonic {
fn as_ref(&self) -> &str {
&self.0
}
}
impl fmt::Debug for Mnemonic {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
"<bip39::Mnemonic>".fmt(f)
}
}
/// Reference to a normalized (unicode NFKD) passphrase.
#[repr(transparent)]
pub struct PassphraseRef(str);
impl Deref for PassphraseRef {
type Target = str;
fn deref(&self) -> &str {
// SAFETY: PassphraseRef is represented exactly as str due to repr(transparent)
unsafe { core::mem::transmute(self) }
}
}
impl ToOwned for PassphraseRef {
type Owned = Passphrase;
fn to_owned(&self) -> Passphrase {
Passphrase(self.deref().to_owned())
}
}
impl<'a> From<&'a Passphrase> for &'a PassphraseRef {
fn from(passphrase_ref: &'a Passphrase) -> Self {
passphrase_ref.borrow()
}
}
impl<'a> TryFrom<&'a str> for &'a PassphraseRef {
type Error = Error;
fn try_from(passphrase_str: &'a str) -> Result<Self, Error> {
if is_nfkd(passphrase_str) {
// SAFETY: PassphraseRef is represented exactly as str due to repr(transparent)
Ok(unsafe { core::mem::transmute::<&str, Self>(passphrase_str) })
} else {
Err(Error::UnnormalizedPassphrase)
}
}
}
/// Owned normalized (unicode NFKD) passphrase.
///
/// Passphrase is a memorable secret and is used as additional secret used together with mnemonic to derive seed.
/// If passphrase and mnemonic are leaked then the seed is compromised.
#[derive(Clone, Zeroize, ZeroizeOnDrop)]
pub struct Passphrase(String);
impl Passphrase {
pub fn new() -> Self {
Self(String::new())
}
}
impl Default for Passphrase {
fn default() -> Self {
Self::new()
}
}
impl Deref for Passphrase {
type Target = PassphraseRef;
fn deref(&self) -> &PassphraseRef {
// SAFETY: PassphraseRef is represented exactly as str due to repr(transparent)
unsafe { core::mem::transmute(self.0.as_str()) }
}
}
impl Borrow<PassphraseRef> for Passphrase {
fn borrow(&self) -> &PassphraseRef {
self
}
}
impl From<String> for Passphrase {
fn from(mut unnormalized_passphrase: String) -> Self {
let passphrase = Self(unnormalized_passphrase.chars().nfkd().collect());
unnormalized_passphrase.zeroize();
passphrase
}
}
impl From<&str> for Passphrase {
fn from(unnormalized_passphrase: &str) -> Self {
Self(unnormalized_passphrase.chars().nfkd().collect())
}
}
impl From<Zeroizing<String>> for Passphrase {
fn from(unnormalized_passphrase: Zeroizing<String>) -> Self {
Self(unnormalized_passphrase.chars().nfkd().collect())
}
}
impl AsRef<str> for Passphrase {
fn as_ref(&self) -> &str {
&self.0
}
}
impl fmt::Debug for Passphrase {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
"<bip39::Passphrase>".fmt(f)
}
}
/// Seed is a secret used as master key (ie. other keys are derived/computed from it).
///
/// Seed must either be securely stored (on a hardware token, for example) or it can be derived from mnemonic and
/// optional passphrase. If seed is leaked then all keys derived from it might be compromised.
#[derive(Clone, Zeroize, ZeroizeOnDrop)]
pub struct Seed([u8; 64]);
impl Seed {
pub fn bytes(&self) -> &[u8; 64] {
&self.0
}
}
impl AsRef<[u8]> for Seed {
fn as_ref(&self) -> &[u8] {
&self.0
}
}
impl fmt::Debug for Seed {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
"<bip39::Seed>".fmt(f)
}
}
/// Derive seed from mnemonic and optional (can be empty) passphrase.
// Return seed via mutable reference to avoid potential leaks into stack memory.
pub fn mnemonic_to_seed(m: &MnemonicRef, p: &PassphraseRef) -> Seed {
let mut salt = [b"mnemonic", p.0.as_bytes()].concat();
const ROUNDS: core::num::NonZeroU32 = unsafe { core::num::NonZeroU32::new_unchecked(2048) };
let mut seed = Seed([0_u8; 64]);
crate::keys::pbkdf::PBKDF2_HMAC_SHA512(m.as_bytes(), &salt, ROUNDS, &mut seed.0);
salt.zeroize();
seed
}
pub mod wordlist {
use alloc::vec::Vec;
use super::*;
/// Word list complying with BIP39 rules.
///
/// All words should be different and easily distinguishable from other words in the list.
pub struct Wordlist<'a> {
words: &'a [&'a str; 2048],
separator: char,
}
#[cfg(feature = "bip39-en")]
#[cfg_attr(docsrs, doc(cfg(feature = "bip39-en")))]
include!("bip39.en.rs");
#[cfg(feature = "bip39-jp")]
#[cfg_attr(docsrs, doc(cfg(feature = "bip39-jp")))]
include!("bip39.jp.rs");
impl<'a> Wordlist<'a> {
const fn new_unchecked(separator: char, words: &'a [&'a str; 2048]) -> Self {
Self { words, separator }
}
/// Verify and construct a word list from separator and set of words.
///
/// Separator character must normalize to a single character.
/// Words must be in NFKD form, can't contain separator. All words must be unique.
pub fn new(separator: char, words: &'a [&'a str; 2048]) -> Result<Self, Error> {
// normalize separator char
let s = String::from(separator);
let mut s_chars = s.nfkd();
if let Some(separator) = s_chars.next() {
if s_chars.next().is_none() {
// each word is normalized and without separator
words.iter().try_for_each(|word| {
if is_nfkd(word) && !word.contains(separator) {
Ok(())
} else {
Err(Error::BadWordlistWord(word.to_string()))
}
})?;
// all words are unique, but not necessarily sorted
let mut words_set = words.to_vec();
words_set.sort();
if iterator_sorted::is_unique_sorted(words_set.into_iter()) {
Ok(Self { words, separator })
} else {
Err(Error::UnsortedWordlist)
}
} else {
Err(Error::BadSeparator)
}
} else {
Err(Error::BadSeparator)
}
}
pub fn separator(&self) -> char {
self.separator
}
pub fn words(&self) -> &'a [&'a str; 2048] {
self.words
}
pub fn lookup(&self, word: &str) -> Option<usize> {
self.words.iter().position(|w| *w == word)
}
}
/// Encode the given secret entropy bytestring as a mnemonic sentence using the specified word list.
/// Only bytestrings of length 128, 160, 192, 224 and 256 bits are accepted, and this is the
/// only expected error case.
///
/// Currently the Japanese language is not supported, or at least the implementation is not
/// generating the expected sentences compared to our test vectors. Use at your own risk!
#[allow(non_snake_case)]
#[allow(clippy::many_single_char_names)]
pub fn encode(secret_entropy: &[u8], wordlist: &Wordlist) -> Result<Mnemonic, Error> {
match secret_entropy.len() {
16 | 20 | 24 | 28 | 32 => {}
_ => return Err(Error::InvalidEntropyCount(secret_entropy.len() * 8)),
}
let mut checksum = [0; 32];
crate::hashes::sha::SHA256(secret_entropy, &mut checksum);
let (_, leftover_bits, mut capacity, words) = secret_entropy.iter().chain(Some(&checksum[0])).fold(
(0_u32, 0, 0_usize, Vec::new()),
|(mut acc, mut bits, mut mnemonic_capacity, mut mnemonic_words), entropy_byte| {
const MASK: u32 = (1_u32 << 11) - 1;
acc = (acc << 8) | (*entropy_byte as u32);
bits += 8;
if bits >= 11 {
debug_assert!(bits <= 18);
bits -= 11;
let idx = (MASK & (acc >> bits)) as usize;
let word = wordlist.words[idx];
mnemonic_words.push(word);
mnemonic_capacity += word.as_bytes().len();
}
debug_assert!(bits <= 10);
(acc, bits, mnemonic_capacity, mnemonic_words)
},
);
// leftover_bits here represent the number of left-over low bits in checksum byte
debug_assert_eq!(8, secret_entropy.len() / 4 + leftover_bits as usize);
if !words.is_empty() {
capacity += (words.len() - 1) * wordlist.separator.encode_utf8(&mut [0_u8; 4]).len();
}
// allocate the exact number of bytes required for secret mnemonic to avoid reallocations and potential secret
// leakage
let mut mnemonic = String::with_capacity(capacity);
words.into_iter().for_each(|word| {
if !mnemonic.is_empty() {
mnemonic.push(wordlist.separator);
}
mnemonic.push_str(word);
});
debug_assert_eq!(capacity, mnemonic.as_bytes().len());
Ok(Mnemonic(mnemonic))
}
/// Decode and compare the checksum given a mnemonic sentence and the wordlist used in the
/// generation process.
///
/// Be aware that the error detection has a noticable rate of false positives. Given CS
/// checksum bits (CS := ENT / 32) the expected rate of false positives are one in 2^CS. For
/// example given 128 bit entropy that's 1 in 16.
pub fn decode(mnemonic: &MnemonicRef, wordlist: &Wordlist) -> Result<Zeroizing<Vec<u8>>, Error> {
// allocate maximal entropy capacity of 32 bytes to avoid reallocations
let mut entropy = Zeroizing::new(Vec::with_capacity(32));
let (checksum_acc, checksum_bits) =
mnemonic
.split(wordlist.separator)
.try_fold((0_u32, 0), |(mut acc, mut bits), word| {
let idx = wordlist
.lookup(word)
.ok_or_else(|| Error::NoSuchWord(word.to_string()))? as u32;
acc = (acc << 11) | idx;
bits += 11;
while bits > 8 {
debug_assert!(bits <= 19);
if entropy.len() == entropy.capacity() {
return Err(Error::InvalidEntropyCount(32));
}
bits -= 8;
entropy.push((acc >> bits) as u8);
}
debug_assert!(bits <= 8);
Ok((acc, bits))
})?;
// checksum_bits here represent the number of high bits in checksum byte
match entropy.len() {
16 | 20 | 24 | 28 | 32 => {
debug_assert_eq!(entropy.len() / 4, checksum_bits as usize);
}
_ => {
return Err(Error::InvalidEntropyCount(entropy.len() * 8 + checksum_bits as usize));
}
}
let mut checksum = [0; 32];
crate::hashes::sha::SHA256(&entropy, &mut checksum);
if (checksum_acc & ((1 << checksum_bits) - 1)) as u8 != checksum[0] >> (8 - checksum_bits) {
return Err(Error::ChecksumMismatch);
}
Ok(entropy)
}
pub fn verify(mnemonic: &MnemonicRef, wordlist: &Wordlist) -> Result<(), Error> {
decode(mnemonic, wordlist).map(|_| ())
}
}
#[cfg(feature = "bip39-en")]
#[test]
fn test_encode_decode() {
fn inc(e: u8, i: usize) -> u8 {
((e as usize + 0x9b17f203) * (i + 0x4792a0e2) + 7) as u8
}
let mut entropy = [0_u8; 32];
for _ in 0..5 {
entropy
.iter_mut()
.enumerate()
.for_each(|(i, e)| *e = e.wrapping_add(inc(*e, i)));
for i in 4..9 {
let n = 4 * i;
let mnemonic = wordlist::encode(&entropy[..n], &wordlist::ENGLISH).unwrap();
let decoded_entropy = wordlist::decode(&mnemonic, &wordlist::ENGLISH).unwrap();
assert_eq!(&entropy[..n], &decoded_entropy[..]);
}
}
}