-
Notifications
You must be signed in to change notification settings - Fork 0
/
libauxiliar.h
119 lines (101 loc) · 3.31 KB
/
libauxiliar.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
/*
* Copyright 2009-2015 IPOL Image Processing On Line http://www.ipol.im/
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* @file libauxiliar.h
* @brief Auxiliar functions.
* @author Joan Duran <[email protected]>
*/
#ifndef _LIBAUXILIAR_H_
#define _LIBAUXILIAR_H_
#include <omp.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <cmath>
#include <time.h>
#include <unistd.h>
#include "mt19937ar.h"
#define fTiny 0.00000001f
#define fLarge 100000000.0f
#define MAX(i,j) ( (i)<(j) ? (j):(i) )
#define MIN(i,j) ( (i)<(j) ? (i):(j) )
/**
* \brief Compute discrete gradient operator via forward differences.
*
* @param[in] u input vector : the first pointer accounts for the channel and
* the second one for the pixel position.
* @param[out] ux, uy horizontal and vertical forward differences : the first
* pointer accounts for the channel and the second one for the
* pixel position.
* @param[in] num_channels number of channels of the image.
* @param[in] width, height image size.
*
*/
void gradient(float **u, float **ux, float **uy, int num_channels, int width,
int height);
/**
* \brief Compute divergence operator as @f$ \langle -\mbox{div} p, u \rangle =
* \langle p, \nabla u\rangle @f$.
*
* @param[in] px, py dual variables : the first pointer accounts for the
* channel and the second one for the pixel position.
* @param[out] div divergence operator : the first pointer accounts for the
* channel and the second one for the pixel position.
* @param[in] num_channels number of channels of the image.
* @param[in] width, height image size.
*
*/
void divergence(float **px, float **py, float **div, int num_channels,
int width, int height);
/**
* \brief Compute the sign of a float value.
*
* @param[in] value input float value.
* @return sign of value.
*/
int SIGN(float value);
/**
* \brief Initialize a float vector.
*
* @param[in] u vector input.
* @param[out] u vector output.
* @param[in] value value inserted.
* @param[in] dim size of the vector.
*
*/
void fpClear(float *u, float value, int dim);
/**
* \brief Copy the values of a float vector into another.
*
* @param[in] input vector input.
* @param[out] output vector output.
* @param[in] dim size of vectors.
*
*/
void fpCopy(float *input, float *output, int dim);
/**
* \brief Add white Gaussian noise to an image.
*
* @param[in] u original image.
* @param[out] v noised image.
* @param[in] std noise standard deviation.
* @param[in] randinit random parameter.
* @param[in] dim image size.
*
*/
void fiAddNoise(float *u, float *v, float std, long int randinit, int dim);
#endif