-
Notifications
You must be signed in to change notification settings - Fork 0
/
functions.py
104 lines (88 loc) · 3.28 KB
/
functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
"""
Functions implementing custom NN layers
Copyright (C) 2018, Matias Tassano <[email protected]>
This program is free software: you can use, modify and/or
redistribute it under the terms of the GNU General Public
License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later
version. You should have received a copy of this license along
this program. If not, see <http://www.gnu.org/licenses/>.
"""
import torch
from torch.autograd import Function, Variable
def concatenate_input_noise_map(input, noise_sigma):
r"""Implements the first layer of FFDNet. This function returns a
torch.autograd.Variable composed of the concatenation of the downsampled
input image and the noise map. Each image of the batch of size CxHxW gets
converted to an array of size 4*CxH/2xW/2. Each of the pixels of the
non-overlapped 2x2 patches of the input image are placed in the new array
along the first dimension.
Args:
input: batch containing CxHxW images
noise_sigma: the value of the pixels of the CxH/2xW/2 noise map
"""
# noise_sigma is a list of length batch_size
N, C, H, W = input.size()
dtype = input.type()
sca = 2
sca2 = sca*sca
Cout = sca2*C
Hout = H//sca
Wout = W//sca
idxL = [[0, 0], [0, 1], [1, 0], [1, 1]]
# Fill the downsampled image with zeros
if 'cuda' in dtype:
downsampledfeatures = torch.cuda.FloatTensor(N, Cout, Hout, Wout).fill_(0)
else:
downsampledfeatures = torch.FloatTensor(N, Cout, Hout, Wout).fill_(0)
# Build the CxH/2xW/2 noise map
noise_map = noise_sigma.view(N, 1, 1, 1).repeat(1, C, Hout, Wout)
# Populate output
for idx in range(sca2):
downsampledfeatures[:, idx:Cout:sca2, :, :] = \
input[:, :, idxL[idx][0]::sca, idxL[idx][1]::sca]
# concatenate de-interleaved mosaic with noise map
return torch.cat((noise_map, downsampledfeatures), 1)
class UpSampleFeaturesFunction(Function):
r"""Extends PyTorch's modules by implementing a torch.autograd.Function.
This class implements the forward and backward methods of the last layer
of FFDNet. It basically performs the inverse of
concatenate_input_noise_map(): it converts each of the images of a
batch of size CxH/2xW/2 to images of size C/4xHxW
"""
@staticmethod
def forward(ctx, input):
N, Cin, Hin, Win = input.size()
dtype = input.type()
sca = 2
sca2 = sca*sca
Cout = Cin//sca2
Hout = Hin*sca
Wout = Win*sca
idxL = [[0, 0], [0, 1], [1, 0], [1, 1]]
assert (Cin%sca2 == 0), \
'Invalid input dimensions: number of channels should be divisible by 4'
result = torch.zeros((N, Cout, Hout, Wout)).type(dtype)
for idx in range(sca2):
result[:, :, idxL[idx][0]::sca, idxL[idx][1]::sca] = \
input[:, idx:Cin:sca2, :, :]
return result
@staticmethod
def backward(ctx, grad_output):
N, Cg_out, Hg_out, Wg_out = grad_output.size()
dtype = grad_output.data.type()
sca = 2
sca2 = sca*sca
Cg_in = sca2*Cg_out
Hg_in = Hg_out//sca
Wg_in = Wg_out//sca
idxL = [[0, 0], [0, 1], [1, 0], [1, 1]]
# Build output
grad_input = torch.zeros((N, Cg_in, Hg_in, Wg_in)).type(dtype)
# Populate output
for idx in range(sca2):
grad_input[:, idx:Cg_in:sca2, :, :] = \
grad_output.data[:, :, idxL[idx][0]::sca, idxL[idx][1]::sca]
return Variable(grad_input)
# Alias functions
upsamplefeatures = UpSampleFeaturesFunction.apply