Skip to content

Commit

Permalink
Add a tests for training MNIST on CUDA and CPU that verify same resul…
Browse files Browse the repository at this point in the history
…t as Jax

The two tests fail for different reasons. Things work OK except the
procedure to initialize the optimizer.
  • Loading branch information
sogartar committed Feb 1, 2023
1 parent 26006ef commit 4e4d641
Showing 1 changed file with 260 additions and 0 deletions.
260 changes: 260 additions & 0 deletions tests/mnist_train_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,260 @@
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import jax
import os
import numpy.random as npr
from examples import datasets
from iree import runtime as iree_rt
import jax.core
import jax.numpy as jnp
from jax import grad, random
from jax.example_libraries import optimizers, stax
from jax.example_libraries.stax import Dense, Relu, LogSoftmax
from jax.tree_util import tree_flatten
from iree.jax import (
like,
kernel,
IREE,
Program,
)
from tempfile import TemporaryDirectory
import numpy as np
from typing import Any, Callable
import unittest


def get_example_batch():
batch_size = 128
train_images, train_labels, test_images, test_labels = datasets.mnist()
num_train = train_images.shape[0]
num_complete_batches, leftover = divmod(num_train, batch_size)
num_batches = num_complete_batches + bool(leftover)

def data_stream():
rng = npr.RandomState(0)
while True:
perm = rng.permutation(num_train)
for i in range(num_batches):
batch_idx = perm[i * batch_size:(i + 1) * batch_size]
yield train_images[batch_idx], train_labels[batch_idx]

batches = data_stream()
return next(batches)


def get_model():
init_random_params, predict = stax.serial(
Dense(128),
Relu,
Dense(128),
Relu,
Dense(10),
LogSoftmax,
)
return init_random_params, predict


def loss(params, batch, predict_fn):
inputs, targets = batch
preds = predict_fn(params, inputs)
return -jnp.mean(jnp.sum(preds * targets, axis=1))


def create_iree_jax_module():
init_random_params, forward = get_model()

rng = random.PRNGKey(12345)
_, init_params = init_random_params(rng, (-1, 28 * 28))
opt_init, opt_update, opt_get_params = optimizers.momentum(0.001, mass=0.9)
opt_state = opt_init(init_params)

example_batch = get_example_batch()

class IreeJaxMnistModule(Program):
_opt_state = opt_state

def get_params(self):
return opt_get_params(self._opt_state)

def get_opt_state(self):
return self._opt_state

def set_opt_state(self, new_opt_state=like(opt_state)):
self._opt_state = new_opt_state

def initialize(self, rng=like(rng)):
self._opt_state = self._initialize_optimizer(rng)

def update(self, batch=like(example_batch)):
new_opt_state = self._update_step(batch, self._opt_state)
self._opt_state = new_opt_state

def forward(self, inputs=like(example_batch[0])):
return self._forward(opt_get_params(self._opt_state), inputs)

@kernel
def _initialize_optimizer(rng):
_, init_params = init_random_params(rng, (-1, 28 * 28))
return opt_init(init_params)

@kernel
def _update_step(batch, opt_state):
params = opt_get_params(opt_state)
return opt_update(0, grad(loss)(params, batch, forward), opt_state)

@kernel
def _forward(params, inputs):
return forward(params, inputs)

return IreeJaxMnistModule()


def build_iree_module(artifacts_dir,
backend: str = "llvm-cpu",
runtime: str = "local-task"):
module = create_iree_jax_module()
with open(os.path.join(artifacts_dir, "mnist_train.mlir"), "wb") as f:
Program.get_mlir_module(module).operation.print(f, binary=True)
binary = IREE.compile_program(module, backends=[backend], runtime=runtime)
iree_vmfb_path = os.path.join(artifacts_dir, "mnist_train.vmfb")
with open(iree_vmfb_path, "wb") as f:
f.write(binary.compiled_artifact)
loaded_module = iree_rt.system_api.load_vm_flatbuffer_file(iree_vmfb_path,
driver=runtime)
return loaded_module


def build_jax_module():
init_random_params, forward = get_model()

rng = random.PRNGKey(12345)
_, init_params = init_random_params(rng, (-1, 28 * 28))
opt_init, opt_update, opt_get_params = optimizers.momentum(0.001, mass=0.9)
opt_state = opt_init(init_params)

example_batch = get_example_batch()

class JaxMnistModule:
_opt_state = opt_state

def get_params(self):
return opt_get_params(self._opt_state)

def get_opt_state(self):
return self._opt_state

def set_opt_state(self, new_opt_state):
self._opt_state = new_opt_state

def initialize(self, rng):
self._opt_state = JaxMnistModule._initialize_optimizer(rng)

def update(self, batch):
new_opt_state = JaxMnistModule._update_step(batch, self._opt_state)
self._opt_state = new_opt_state

def forward(self, inputs):
return JaxMnistModule._forward(opt_get_params(self._opt_state), inputs)

@jax.jit
def _initialize_optimizer(rng):
_, init_params = init_random_params(rng, (-1, 28 * 28))
return opt_init(init_params)

@jax.jit
def _update_step(batch, opt_state):
params = opt_get_params(opt_state)
return opt_update(0, grad(loss)(params, batch, forward), opt_state)

@jax.jit
def _forward(params, inputs):
return forward(params, inputs)

return JaxMnistModule()


def assert_array_almost_equal(a, b):
np_a = np.asarray(a)
np_b = np.asarray(b)
# Test for absolute error.
np.testing.assert_array_almost_equal(np_a, np_b, decimal=5)
# Test for relative error while ignoring false positives from
# catastrophic cancellation.
np.testing.assert_array_almost_equal_nulp(np.abs(np_a - np_b) + 10**-7,
np.zeros_like(np_a),
nulp=10**8)


def assert_array_list_equal(
a,
b,
array_compare_fn: Callable[[Any, Any],
None] = np.testing.assert_array_equal):
assert (len(a) == len(b))
for x, y in zip(a, b):
array_compare_fn(x, y)


def assert_array_list_almost_equal(a, b):
assert_array_list_equal(a, b, assert_array_almost_equal)


def train_mnist_test(backend: str, runtime: str):
"""Run a training step on the same model with both Jax and IREE and
verify that results are the same."""

example_batch = get_example_batch()

with TemporaryDirectory() as tmp_dir:
iree_module = build_iree_module(artifacts_dir=tmp_dir,
backend=backend,
runtime=runtime)
jax_module = build_jax_module()

# Check state is the same
assert_array_list_equal(iree_module.get_opt_state(),
tree_flatten(jax_module.get_opt_state())[0])

# Check one training step.
iree_module.update(*example_batch)
jax_module.update(example_batch)
assert_array_list_almost_equal(iree_module.get_opt_state(),
tree_flatten(jax_module.get_opt_state())[0])

# Check inference.
iree_module.set_opt_state(*tree_flatten(jax_module.get_opt_state())[0])
prediction_iree = iree_module.forward(example_batch[0])
prediction_jax = jax_module.forward(example_batch[0])
assert_array_almost_equal(prediction_iree, prediction_jax)

# Check intialization.
rng = random.PRNGKey(6789)
iree_module.initialize(np.asarray(rng, dtype=np.int32))
jax_module.initialize(rng)
assert_array_list_almost_equal(iree_module.get_opt_state(),
tree_flatten(jax_module.get_opt_state())[0])


class MnistTrainTest(unittest.TestCase):

def test_train_mnist_cuda(self):
train_mnist_test(backend="cuda", runtime="cuda")

def test_train_mnist_llvm_cpu(self):
train_mnist_test(backend="llvm-cpu", runtime="local-task")


if __name__ == "__main__":
unittest.main()

0 comments on commit 4e4d641

Please sign in to comment.