-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathcifar_dsp.py
129 lines (109 loc) · 5.73 KB
/
cifar_dsp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import os
import torchvision.datasets as dsets
import torchvision.transforms as transforms
from torch.optim.lr_scheduler import CosineAnnealingLR
from tqdm import tqdm
from cifar_model import *
from dsp_module import *
import argparse
def warn(*args, **kwargs):
pass
import warnings
warnings.warn = warn
benchmark_mode(True)
parser = argparse.ArgumentParser(description='CIFAR-10 ResNet Training')
parser.add_argument('--save_dir', type=str, default='./cifarmodel/', help='Folder to save checkpoints and log.')
parser.add_argument('-l', '--layers', default=20, type=int, metavar='L', help='number of ResNet layers')
parser.add_argument('-d', '--device', default='0', type=str, metavar='D', help='main device (default: 0)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='J', help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=120, type=int, metavar='E', help='number of total epochs to run')
parser.add_argument('-b', '--batch-size', default=128, type=int, metavar='B', help='mini-batch size')
parser.add_argument('--lr', '--learning-rate', default=0.05, type=float, metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-3, type=float, metavar='W', help='weight decay')
# DSP Hyperparameters
parser.add_argument('-g', '--groups', default=4, type=int, metavar='G', help='number of groups')
parser.add_argument('-r', '--regularize', default=2e-3, type=float, metavar='R', help='regularization power')
parser.add_argument('-t', '--temparature', default=0.5, type=float, metavar='T', help='temparature for gumbel softmax')
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"]=args.device
def get_lr(optimizer):
return [param_group['lr'] for param_group in optimizer.param_groups]
device = torch.device("cuda")
def train(network):
train_dataset = dsets.CIFAR10(root='./dataset',
train=True,
download=True,
transform=transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(32, 4),
transforms.ToTensor(),
transforms.Normalize(mean=(0.4914, 0.4822, 0.4465),
std=(0.2470, 0.2435, 0.2616))
]))
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=args.batch_size, num_workers=args.workers,
shuffle=True, drop_last=True)
test_dataset = dsets.CIFAR10(root='./dataset',
train=False,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=(0.4914, 0.4822, 0.4465),
std=(0.2470, 0.2435, 0.2616))
]))
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=args.batch_size, num_workers=args.workers,
shuffle=False)
cnn, netname = network
config = netname
loadpath = args.save_dir+'/'+netname+'.pkl'
savepath = args.save_dir+'/'+netname+'_G%sg%d.pkl'%(args.device, args.groups)
state_dict, baseacc = torch.load(loadpath)
print(loadpath)
print(baseacc)
cnn.load_state_dict(state_dict)
criterion = nn.CrossEntropyLoss()
bestacc=0
optimizer = torch.optim.SGD(cnn.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
scheduler = CosineAnnealingLR(optimizer, args.epochs)
group_trainer = GroupWrapper(cnn, optimizer, criterion, args.regularize, len(train_loader)*args.epochs, args.groups, args.temparature)
bar = tqdm(total=len(train_loader) * args.epochs, ncols=120)
for epoch in range(args.epochs):
cnn.train()
for step, (images, labels) in enumerate(train_loader):
group_trainer.initialize()
optimizer.zero_grad()
gpuimg = images.to(device)
labels = labels.to(device)
outputs = cnn(gpuimg)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
group_trainer.after_step(gpuimg, labels)
bar.set_description("[" + config + "]LR:%.4f|LOSS:%.2f|ACC:%.2f|STD:%.3f" % (get_lr(optimizer)[0], loss.item(), bestacc, group_trainer.stats()))
bar.update()
scheduler.step()
cnn.eval()
correct = 0
total = 0
with torch.no_grad():
for images, labels in test_loader:
images = images.to(device)
outputs = cnn(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted.cpu() == labels).sum().item()
acc = 100 * correct / total
print()
print(f"Val accuracy: {acc}%")
cnn.train()
if (bestacc<acc) and (epoch>8):
bestacc=acc
torch.save([cnn.state_dict(),bestacc], savepath)
bar.set_description("[" + config + "]LR:%.4f|LOSS:%.2f|ACC:%.2f|STD:%.3f" % (get_lr(optimizer)[0], loss.item(), bestacc, group_trainer.stats()))
bar.close()
return bestacc
def resnet(layers):
return CifarResNet(ResNetBasicblock, layers, 10).to(device), "resnet"+str(layers)
if __name__ == '__main__':
train(resnet(args.layers))