-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathcifar_finetune.py
142 lines (119 loc) · 6.56 KB
/
cifar_finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import os
import math
import copy
import torchvision.datasets as dsets
import torchvision.transforms as transforms
from torch.optim.lr_scheduler import CosineAnnealingLR
from tqdm import tqdm
from cifar_model import *
from dsp_module import *
import argparse
def warn(*args, **kwargs):
pass
import warnings
warnings.warn = warn
benchmark_mode(True)
parser = argparse.ArgumentParser(description='CIFAR-10 ResNet Training')
parser.add_argument('--save_dir', type=str, default='./cifarmodel/', help='Folder to save checkpoints and log.')
parser.add_argument('-l', '--layers', default=20, type=int, metavar='L', help='number of ResNet layers')
parser.add_argument('-d', '--device', default='0', type=str, metavar='D', help='main device (default: 0)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='J', help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=400, type=int, metavar='E', help='number of total epochs to run')
parser.add_argument('-b', '--batch-size', default=128, type=int, metavar='B', help='mini-batch size')
parser.add_argument('--lr', '--learning-rate', default=0.015, type=float, metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-3, type=float, metavar='W', help='weight decay')
# Fine-tuning Hyperparameters
parser.add_argument('-c', '--cycles', default=5, type=int, metavar='C', help='number of cyclic iterations')
parser.add_argument('-g', '--groups', default=4, type=int, metavar='G', help='number of groups')
parser.add_argument('-p', '--prune', default=0.5, type=float, metavar='P', help='pruning rates)')
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"]=args.device
def get_lr(optimizer):
return [param_group['lr'] for param_group in optimizer.param_groups]
device = torch.device("cuda")
def train(network):
train_dataset = dsets.CIFAR10(root='./dataset',
train=True,
download=True,
transform=transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(32, 4),
transforms.ToTensor(),
transforms.Normalize(mean=(0.4914, 0.4822, 0.4465),
std=(0.2470, 0.2435, 0.2616))
]))
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=args.batch_size, num_workers=args.workers,
shuffle=True, drop_last=True)
test_dataset = dsets.CIFAR10(root='./dataset',
train=False,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=(0.4914, 0.4822, 0.4465),
std=(0.2470, 0.2435, 0.2616))
]))
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=args.batch_size, num_workers=args.workers,
shuffle=False)
cnn, netname = network
config = netname
savepath = args.save_dir+'/'+netname+'_P%sg%dc%.2f.pkl'%(args.device, args.groups, args.prune)
loadpath = args.save_dir+'/'+netname+'_G%sg%d.pkl'%(args.device, args.groups)
state_dict, baseacc = torch.load(loadpath)
print(loadpath)
print(baseacc)
pruner = PruneWrapper(cnn, args.groups, 2)
cnn.load_state_dict(state_dict, strict=False)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(cnn.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
epoch_per_cycle = math.ceil(args.epochs / args.cycles)
scheduler = CosineAnnealingLR(optimizer, epoch_per_cycle)
flops, params = pruner.initialize(args.prune)
bestset = {'acc':0, 'flops':flops, 'params':params, 'state_dict': copy.deepcopy(cnn.state_dict())}
bar = tqdm(total=len(train_loader) * args.epochs, ncols=120)
for epoch in range(args.epochs):
cnn.train()
for step, (images, labels) in enumerate(train_loader):
optimizer.zero_grad()
gpuimg = images.to(device)
labels = labels.to(device)
outputs = cnn(gpuimg)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
pruner.after_step()
bar.set_description("[" + config + "]LR:%.4f|LOSS:%.2f|ACC:%.2f|PR_F:%.2f|PR_P:%.2f" % (get_lr(optimizer)[0], loss.item(), bestset['acc'], bestset['flops'], bestset['params']))
bar.update()
scheduler.step()
cnn.eval()
correct = 0
total = 0
with torch.no_grad():
for images, labels in test_loader:
images = images.to(device)
outputs = cnn(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted.cpu() == labels).sum().item()
acc = 100 * correct / total
print()
print(f"Val accuracy: {acc}%")
cnn.train()
if bestset['acc']<=acc:
bestset = {'acc':acc, 'flops':flops, 'params':params, 'state_dict': copy.deepcopy(cnn.state_dict())}
torch.save([bestset['state_dict'], bestset['acc']], savepath)
bar.set_description("[" + config + "]LR:%.4f|LOSS:%.2f|ACC:%.2f|PR_F:%.2f|PR_P:%.2f" % (get_lr(optimizer)[0], loss.item(), bestset['acc'], bestset['flops'], bestset['params']))
# prune a small portion of channels for each cycle
# to prevent over-fitting and to remove dead channels
if (epoch<args.epochs-1) and ((epoch+1)%epoch_per_cycle==0):
cnn.load_state_dict(bestset['state_dict'])
flops, params=pruner.initialize(bestset['flops']/100+0.001)
optimizer = torch.optim.SGD(cnn.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
scheduler = CosineAnnealingLR(optimizer, epoch_per_cycle)
bar.close()
return bestset['acc']
def resnet(layers):
return CifarResNet(ResNetBasicblock, layers, 10).to(device), "resnet"+str(layers)
if __name__ == '__main__':
train(resnet(args.layers))