-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathdiffusion_vpg.py
502 lines (442 loc) · 17.5 KB
/
diffusion_vpg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
"""
Policy gradient with diffusion policy. VPG: vanilla policy gradient
K: number of denoising steps
To: observation sequence length
Ta: action chunk size
Do: observation dimension
Da: action dimension
C: image channels
H, W: image height and width
"""
import copy
import torch
import logging
log = logging.getLogger(__name__)
import torch.nn.functional as F
from model.diffusion.diffusion import DiffusionModel, Sample
from model.diffusion.sampling import make_timesteps, extract
from torch.distributions import Normal
class VPGDiffusion(DiffusionModel):
def __init__(
self,
actor,
critic,
ft_denoising_steps,
ft_denoising_steps_d=0,
ft_denoising_steps_t=0,
network_path=None,
# modifying denoising schedule
min_sampling_denoising_std=0.1,
min_logprob_denoising_std=0.1,
# eta in DDIM
eta=None,
learn_eta=False,
**kwargs,
):
super().__init__(
network=actor,
network_path=network_path,
**kwargs,
)
assert ft_denoising_steps <= self.denoising_steps
assert ft_denoising_steps <= self.ddim_steps if self.use_ddim else True
assert not (learn_eta and not self.use_ddim), "Cannot learn eta with DDPM."
# Number of denoising steps to use with fine-tuned model. Thus denoising_step - ft_denoising_steps is the number of denoising steps to use with original model.
self.ft_denoising_steps = ft_denoising_steps
self.ft_denoising_steps_d = ft_denoising_steps_d # annealing step size
self.ft_denoising_steps_t = ft_denoising_steps_t # annealing interval
self.ft_denoising_steps_cnt = 0
# Minimum std used in denoising process when sampling action - helps exploration
self.min_sampling_denoising_std = min_sampling_denoising_std
# Minimum std used in calculating denoising logprobs - for stability
self.min_logprob_denoising_std = min_logprob_denoising_std
# Learnable eta
self.learn_eta = learn_eta
if eta is not None:
self.eta = eta.to(self.device)
if not learn_eta:
for param in self.eta.parameters():
param.requires_grad = False
logging.info("Turned off gradients for eta")
# Re-name network to actor
self.actor = self.network
# Make a copy of the original model
self.actor_ft = copy.deepcopy(self.actor)
logging.info("Cloned model for fine-tuning")
# Turn off gradients for original model
for param in self.actor.parameters():
param.requires_grad = False
logging.info("Turned off gradients of the pretrained network")
logging.info(
f"Number of finetuned parameters: {sum(p.numel() for p in self.actor_ft.parameters() if p.requires_grad)}"
)
# Value function
self.critic = critic.to(self.device)
if network_path is not None:
checkpoint = torch.load(
network_path, map_location=self.device, weights_only=True
)
if "ema" not in checkpoint: # load trained RL model
self.load_state_dict(checkpoint["model"], strict=False)
logging.info("Loaded critic from %s", network_path)
# ---------- Sampling ----------#
def step(self):
"""
Anneal min_sampling_denoising_std and fine-tuning denoising steps
Current configs do not apply annealing
"""
# anneal min_sampling_denoising_std
if type(self.min_sampling_denoising_std) is not float:
self.min_sampling_denoising_std.step()
# anneal denoising steps
self.ft_denoising_steps_cnt += 1
if (
self.ft_denoising_steps_d > 0
and self.ft_denoising_steps_t > 0
and self.ft_denoising_steps_cnt % self.ft_denoising_steps_t == 0
):
self.ft_denoising_steps = max(
0, self.ft_denoising_steps - self.ft_denoising_steps_d
)
# update actor
self.actor = self.actor_ft
self.actor_ft = copy.deepcopy(self.actor)
for param in self.actor.parameters():
param.requires_grad = False
logging.info(
f"Finished annealing fine-tuning denoising steps to {self.ft_denoising_steps}"
)
def get_min_sampling_denoising_std(self):
if type(self.min_sampling_denoising_std) is float:
return self.min_sampling_denoising_std
else:
return self.min_sampling_denoising_std()
# override
def p_mean_var(
self,
x,
t,
cond,
index=None,
use_base_policy=False,
deterministic=False,
):
noise = self.actor(x, t, cond=cond)
if self.use_ddim:
ft_indices = torch.where(
index >= (self.ddim_steps - self.ft_denoising_steps)
)[0]
else:
ft_indices = torch.where(t < self.ft_denoising_steps)[0]
# Use base policy to query expert model, e.g. for imitation loss
actor = self.actor if use_base_policy else self.actor_ft
# overwrite noise for fine-tuning steps
if len(ft_indices) > 0:
cond_ft = {key: cond[key][ft_indices] for key in cond}
noise_ft = actor(x[ft_indices], t[ft_indices], cond=cond_ft)
noise[ft_indices] = noise_ft
# Predict x_0
if self.predict_epsilon:
if self.use_ddim:
"""
x₀ = (xₜ - √ (1-αₜ) ε )/ √ αₜ
"""
alpha = extract(self.ddim_alphas, index, x.shape)
alpha_prev = extract(self.ddim_alphas_prev, index, x.shape)
sqrt_one_minus_alpha = extract(
self.ddim_sqrt_one_minus_alphas, index, x.shape
)
x_recon = (x - sqrt_one_minus_alpha * noise) / (alpha**0.5)
else:
"""
x₀ = √ 1\α̅ₜ xₜ - √ 1\α̅ₜ-1 ε
"""
x_recon = (
extract(self.sqrt_recip_alphas_cumprod, t, x.shape) * x
- extract(self.sqrt_recipm1_alphas_cumprod, t, x.shape) * noise
)
else: # directly predicting x₀
x_recon = noise
if self.denoised_clip_value is not None:
x_recon.clamp_(-self.denoised_clip_value, self.denoised_clip_value)
if self.use_ddim:
# re-calculate noise based on clamped x_recon - default to false in HF, but let's use it here
noise = (x - alpha ** (0.5) * x_recon) / sqrt_one_minus_alpha
# Clip epsilon for numerical stability in policy gradient - not sure if this is helpful yet, but the value can be huge sometimes. This has no effect if DDPM is used
if self.use_ddim and self.eps_clip_value is not None:
noise.clamp_(-self.eps_clip_value, self.eps_clip_value)
# Get mu
if self.use_ddim:
"""
μ = √ αₜ₋₁ x₀ + √(1-αₜ₋₁ - σₜ²) ε
"""
if deterministic:
etas = torch.zeros((x.shape[0], 1, 1)).to(x.device)
else:
etas = self.eta(cond).unsqueeze(1) # B x 1 x (Da or 1)
sigma = (
etas
* ((1 - alpha_prev) / (1 - alpha) * (1 - alpha / alpha_prev)) ** 0.5
).clamp_(min=1e-10)
dir_xt_coef = (1.0 - alpha_prev - sigma**2).clamp_(min=0).sqrt()
mu = (alpha_prev**0.5) * x_recon + dir_xt_coef * noise
var = sigma**2
logvar = torch.log(var)
else:
"""
μₜ = β̃ₜ √ α̅ₜ₋₁/(1-α̅ₜ)x₀ + √ αₜ (1-α̅ₜ₋₁)/(1-α̅ₜ)xₜ
"""
mu = (
extract(self.ddpm_mu_coef1, t, x.shape) * x_recon
+ extract(self.ddpm_mu_coef2, t, x.shape) * x
)
logvar = extract(self.ddpm_logvar_clipped, t, x.shape)
etas = torch.ones_like(mu).to(mu.device) # always one for DDPM
return mu, logvar, etas
# override
@torch.no_grad()
def forward(
self,
cond,
deterministic=False,
return_chain=True,
use_base_policy=False,
):
"""
Forward pass for sampling actions.
Args:
cond: dict with key state/rgb; more recent obs at the end
state: (B, To, Do)
rgb: (B, To, C, H, W)
deterministic: If true, then std=0 with DDIM, or with DDPM, use normal schedule (instead of clipping at a higher value)
return_chain: whether to return the entire chain of denoised actions
use_base_policy: whether to use the frozen pre-trained policy instead
Return:
Sample: namedtuple with fields:
trajectories: (B, Ta, Da)
chain: (B, K + 1, Ta, Da)
"""
device = self.betas.device
sample_data = cond["state"] if "state" in cond else cond["rgb"]
B = len(sample_data)
# Get updated minimum sampling denoising std
min_sampling_denoising_std = self.get_min_sampling_denoising_std()
# Loop
x = torch.randn((B, self.horizon_steps, self.action_dim), device=device)
if self.use_ddim:
t_all = self.ddim_t
else:
t_all = list(reversed(range(self.denoising_steps)))
chain = [] if return_chain else None
if not self.use_ddim and self.ft_denoising_steps == self.denoising_steps:
chain.append(x)
if self.use_ddim and self.ft_denoising_steps == self.ddim_steps:
chain.append(x)
for i, t in enumerate(t_all):
t_b = make_timesteps(B, t, device)
index_b = make_timesteps(B, i, device)
mean, logvar, _ = self.p_mean_var(
x=x,
t=t_b,
cond=cond,
index=index_b,
use_base_policy=use_base_policy,
deterministic=deterministic,
)
std = torch.exp(0.5 * logvar)
# Determine noise level
if self.use_ddim:
if deterministic:
std = torch.zeros_like(std)
else:
std = torch.clip(std, min=min_sampling_denoising_std)
else:
if deterministic and t == 0:
std = torch.zeros_like(std)
elif deterministic: # still keep the original noise
std = torch.clip(std, min=1e-3)
else: # use higher minimum noise
std = torch.clip(std, min=min_sampling_denoising_std)
noise = torch.randn_like(x).clamp_(
-self.randn_clip_value, self.randn_clip_value
)
x = mean + std * noise
# clamp action at final step
if self.final_action_clip_value is not None and i == len(t_all) - 1:
x = torch.clamp(
x, -self.final_action_clip_value, self.final_action_clip_value
)
if return_chain:
if not self.use_ddim and t <= self.ft_denoising_steps:
chain.append(x)
elif self.use_ddim and i >= (
self.ddim_steps - self.ft_denoising_steps - 1
):
chain.append(x)
if return_chain:
chain = torch.stack(chain, dim=1)
return Sample(x, chain)
# ---------- RL training ----------#
def get_logprobs(
self,
cond,
chains,
get_ent: bool = False,
use_base_policy: bool = False,
):
"""
Calculating the logprobs of the entire chain of denoised actions.
Args:
cond: dict with key state/rgb; more recent obs at the end
state: (B, To, Do)
rgb: (B, To, C, H, W)
chains: (B, K+1, Ta, Da)
get_ent: flag for returning entropy
use_base_policy: flag for using base policy
Returns:
logprobs: (B x K, Ta, Da)
entropy (if get_ent=True): (B x K, Ta)
"""
# Repeat cond for denoising_steps, flatten batch and time dimensions
cond = {
key: cond[key]
.unsqueeze(1)
.repeat(1, self.ft_denoising_steps, *(1,) * (cond[key].ndim - 1))
.flatten(start_dim=0, end_dim=1)
for key in cond
} # less memory usage than einops?
# Repeat t for batch dim, keep it 1-dim
if self.use_ddim:
t_single = self.ddim_t[-self.ft_denoising_steps :]
else:
t_single = torch.arange(
start=self.ft_denoising_steps - 1,
end=-1,
step=-1,
device=self.device,
)
# 4,3,2,1,0,4,3,2,1,0,...,4,3,2,1,0
t_all = t_single.repeat(chains.shape[0], 1).flatten()
if self.use_ddim:
indices_single = torch.arange(
start=self.ddim_steps - self.ft_denoising_steps,
end=self.ddim_steps,
device=self.device,
) # only used for DDIM
indices = indices_single.repeat(chains.shape[0])
else:
indices = None
# Split chains
chains_prev = chains[:, :-1]
chains_next = chains[:, 1:]
# Flatten first two dimensions
chains_prev = chains_prev.reshape(-1, self.horizon_steps, self.action_dim)
chains_next = chains_next.reshape(-1, self.horizon_steps, self.action_dim)
# Forward pass with previous chains
next_mean, logvar, eta = self.p_mean_var(
chains_prev,
t_all,
cond=cond,
index=indices,
use_base_policy=use_base_policy,
)
std = torch.exp(0.5 * logvar)
std = torch.clip(std, min=self.min_logprob_denoising_std)
dist = Normal(next_mean, std)
# Get logprobs with gaussian
log_prob = dist.log_prob(chains_next)
if get_ent:
return log_prob, eta
return log_prob
def get_logprobs_subsample(
self,
cond,
chains_prev,
chains_next,
denoising_inds,
get_ent: bool = False,
use_base_policy: bool = False,
):
"""
Calculating the logprobs of random samples of denoised chains.
Args:
cond: dict with key state/rgb; more recent obs at the end
state: (B, To, Do)
rgb: (B, To, C, H, W)
chains: (B, K+1, Ta, Da)
get_ent: flag for returning entropy
use_base_policy: flag for using base policy
Returns:
logprobs: (B, Ta, Da)
entropy (if get_ent=True): (B, Ta)
denoising_indices: (B, )
"""
# Sample t for batch dim, keep it 1-dim
if self.use_ddim:
t_single = self.ddim_t[-self.ft_denoising_steps :]
else:
t_single = torch.arange(
start=self.ft_denoising_steps - 1,
end=-1,
step=-1,
device=self.device,
)
# 4,3,2,1,0,4,3,2,1,0,...,4,3,2,1,0
t_all = t_single[denoising_inds]
if self.use_ddim:
ddim_indices_single = torch.arange(
start=self.ddim_steps - self.ft_denoising_steps,
end=self.ddim_steps,
device=self.device,
) # only used for DDIM
ddim_indices = ddim_indices_single[denoising_inds]
else:
ddim_indices = None
# Forward pass with previous chains
next_mean, logvar, eta = self.p_mean_var(
chains_prev,
t_all,
cond=cond,
index=ddim_indices,
use_base_policy=use_base_policy,
)
std = torch.exp(0.5 * logvar)
std = torch.clip(std, min=self.min_logprob_denoising_std)
dist = Normal(next_mean, std)
# Get logprobs with gaussian
log_prob = dist.log_prob(chains_next)
if get_ent:
return log_prob, eta
return log_prob
def loss(self, cond, chains, reward):
"""
REINFORCE loss. Not used right now.
Args:
cond: dict with key state/rgb; more recent obs at the end
state: (B, To, Do)
rgb: (B, To, C, H, W)
chains: (B, K+1, Ta, Da)
reward (to go): (b,)
"""
# Get advantage
with torch.no_grad():
value = self.critic(cond).squeeze()
advantage = reward - value
# Get logprobs for denoising steps from T-1 to 0
logprobs, eta = self.get_logprobs(cond, chains, get_ent=True)
# (n_steps x n_envs x K) x Ta x (Do+Da)
# Ignore obs dimension, and then sum over action dimension
logprobs = logprobs[:, :, : self.action_dim].sum(-1)
# -> (n_steps x n_envs x K) x Ta
# -> (n_steps x n_envs) x K x Ta
logprobs = logprobs.reshape((-1, self.denoising_steps, self.horizon_steps))
# Sum/avg over denoising steps
logprobs = logprobs.mean(-2) # -> (n_steps x n_envs) x Ta
# Sum/avg over horizon steps
logprobs = logprobs.mean(-1) # -> (n_steps x n_envs)
# Get REINFORCE loss
loss_actor = torch.mean(-logprobs * advantage)
# Train critic to predict state value
pred = self.critic(cond).squeeze()
loss_critic = F.mse_loss(pred, reward)
return loss_actor, loss_critic, eta