-
Notifications
You must be signed in to change notification settings - Fork 2
/
run_span.py
1026 lines (921 loc) · 49.1 KB
/
run_span.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import sys
import time
import json
import glob
import random
import logging
from pathlib import Path
from argparse import ArgumentParser, Namespace
from tqdm import tqdm
import torch
from torch import nn
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
import numpy as np
# datasets
from transformers.data import DataProcessor
# models
import transformers
from transformers import WEIGHTS_NAME
from transformers import (
BertConfig,
BertTokenizer,
BertPreTrainedModel,
BertModel,
)
from transformers.modeling_outputs import TokenClassifierOutput
# trainer & training arguments
from transformers import AdamW, get_linear_schedule_with_warmup
# metrics
from seqeval.metrics.sequence_labeling import (
accuracy_score,
classification_report,
performance_measure,
f1_score, precision_score, recall_score,
get_entities
)
class BertConfigSpanV2(BertConfig):
def __init__(self,
max_span_length=10,
width_embedding_dim=150,
**kwargs,
):
super().__init__(**kwargs)
self.max_span_length = max_span_length
self.width_embedding_dim = width_embedding_dim
# from allennlp.nn.util import batched_index_select
def batched_index_select(input, index):
batch_size, sequence_length, hidden_size = input.size()
batch_size, num_spans = index.size()
index_onehot = torch.FloatTensor(
batch_size, num_spans, sequence_length).to(input.device)
index_onehot.zero_()
index_onehot.scatter_(2, index.unsqueeze(2), 1)
output = torch.bmm(index_onehot, input)
return output
class SpanV2(nn.Module):
def __init__(self, hidden_size, num_labels, max_span_length, width_embedding_dim):
super(SpanV2, self).__init__()
self.width_embedding = nn.Embedding(max_span_length + 1, width_embedding_dim)
self.classifier = nn.Sequential(
nn.Linear(hidden_size * 2 + width_embedding_dim, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, num_labels),
)
def forward(self, hidden_states, spans):
spans_start = spans[:, :, 0].view(spans.size(0), -1)
spans_start_embedding = batched_index_select(hidden_states, spans_start)
spans_end = spans[:, :, 1].view(spans.size(0), -1)
spans_end_embedding = batched_index_select(hidden_states, spans_end)
spans_width = spans[:, :, 2].view(spans.size(0), -1)
spans_width_embedding = self.width_embedding(spans_width)
spans_embedding = torch.cat([
spans_start_embedding,
spans_end_embedding,
spans_width_embedding
], dim=-1) # (batch_size, num_spans, num_features)
logits = self.classifier(spans_embedding)
return logits
def decode_batch(self,
batch, # (batch_size, num_spans, num_labels)
spans, # (batch_size, num_spans, 3)
span_mask, # (batch_size, num_spans)
is_logits: bool=True,
):
decodeds = []
if is_logits:
labels = batch.argmax(dim=-1)
else:
labels = batch
for labels_, spans_, span_mask_ in zip(labels, spans, span_mask):
span_mask_ = span_mask_ == 1.
labels_ = labels_[span_mask_].cpu().numpy().tolist()
spans_ = spans_[span_mask_].cpu().numpy().tolist()
decoded_ = []
for t, s in zip(labels_, spans_):
decoded_.append([t, s[0] - 1, s[1] - 1])
decodeds.append(decoded_)
return decodeds
class SpanV2Loss(nn.Module):
def __init__(self):
super().__init__()
self.loss_fct = nn.CrossEntropyLoss(reduction='none')
def forward(self,
logits=None, # (batch_size, num_spans, num_labels)
label=None, # (batch_size, num_spans)
mask=None, # (batch_size, num_spans)
):
num_labels = logits.size(-1)
loss_mask = mask.view(-1) == 1
loss = self.loss_fct(logits.view(-1, num_labels), label.view(-1))
loss = loss[loss_mask].mean()
return loss
class BertSpanV2ForNer(BertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.bert = BertModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.span = SpanV2(config.hidden_size, config.num_labels,
config.max_span_length, config.width_embedding_dim)
self.init_weights()
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
spans=None, # (batch_size, num_spans, 3)
span_mask=None, # (batch_size, num_spans)
label=None, # (batch_size, num_spans)
input_len=None, # (batch_size)
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.span(sequence_output, spans) # (batch_size, num_spans, num_labels)
total_loss = None
if label is not None:
loss_fct = SpanV2Loss()
total_loss = loss_fct(logits, label, span_mask)
if not return_dict:
output = (logits,) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return TokenClassifierOutput(
loss=total_loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class NerArgumentParser(ArgumentParser):
def __init__(self, **kwargs):
super().__init__(**kwargs)
def parse_args_from_json(self, json_file):
data = json.loads(Path(json_file).read_text())
return Namespace(**data)
def save_args_to_json(self, json_file, args):
Path(json_file).write_text(json.dumps(vars(args), indent=4))
def build_arguments(self):
# Required parameters
self.add_argument("--version", default=None, type=str, required=True,
help="Version of training model.")
self.add_argument("--device", default=None, type=str, required=True,
help="Device for training.")
self.add_argument("--n_gpu", default=1, type=int, required=True,
help="Device for training.")
self.add_argument("--task_name", default=None, type=str, required=True,
help="The name of the task to train selected in the list: ")
self.add_argument("--dataset_name", default=None, type=str, required=True,
help="The name of the dataset for the task")
self.add_argument("--data_dir", default=None, type=str, required=True,
help="The input data dir. Should contain the training files for the CoNLL-2003 NER task.", )
self.add_argument("--train_file", default=None, type=str, required=True)
self.add_argument("--dev_file", default=None, type=str, required=True)
self.add_argument("--test_file", default=None, type=str, required=True)
self.add_argument("--model_type", default=None, type=str, required=True,
help="Model type selected in the list: ")
self.add_argument("--model_name_or_path", default=None, type=str, required=True,
help="Path to pre-trained model or shortcut name selected in the list: " )
self.add_argument("--output_dir", default=None, type=str, required=True,
help="The output directory where the model predictions and checkpoints will be written.", )
self.add_argument("--max_span_length", default=10, type=int)
self.add_argument("--width_embedding_dim", default=150, type=int)
# Other parameters
self.add_argument('--scheme', default='IOB2', type=str,
choices=['IOB2', 'IOBES'])
self.add_argument('--loss_type', default='ce', type=str,
choices=['lsr', 'focal', 'ce'])
self.add_argument("--config_name", default="", type=str,
help="Pretrained config name or path if not the same as model_name")
self.add_argument("--tokenizer_name", default="", type=str,
help="Pretrained tokenizer name or path if not the same as model_name", )
self.add_argument("--cache_dir", default="", type=str,
help="Where do you want to store the pre-trained models downloaded from s3", )
self.add_argument("--train_max_seq_length", default=128, type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.", )
self.add_argument("--eval_max_seq_length", default=512, type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.", )
self.add_argument("--do_train", action="store_true",
help="Whether to run training.")
self.add_argument("--do_eval", action="store_true",
help="Whether to run eval on the dev set.")
self.add_argument("--do_predict", action="store_true",
help="Whether to run predictions on the test set.")
self.add_argument("--evaluate_during_training", action="store_true",
help="Whether to run evaluation during training at each logging step.", )
self.add_argument("--evaluate_each_epoch", action="store_true",
help="Whether to run evaluation during training at each epoch, `--logging_step` will be ignored", )
self.add_argument("--do_lower_case", action="store_true",
help="Set this flag if you are using an uncased model.")
# adversarial training
self.add_argument("--do_fgm", action="store_true",
help="Whether to adversarial training.")
self.add_argument('--fgm_epsilon', default=1.0, type=float,
help="Epsilon for adversarial.")
self.add_argument('--fgm_name', default='word_embeddings', type=str,
help="name for adversarial layer.")
self.add_argument("--per_gpu_train_batch_size", default=8, type=int,
help="Batch size per GPU/CPU for training.")
self.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
help="Batch size per GPU/CPU for evaluation.")
self.add_argument("--gradient_accumulation_steps", type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.", )
self.add_argument("--learning_rate", default=5e-5, type=float,
help="The initial learning rate for Adam.")
self.add_argument("--other_learning_rate", default=5e-5, type=float,
help="The initial learning rate for crf and linear layer.")
self.add_argument("--weight_decay", default=0.01, type=float,
help="Weight decay if we apply some.")
self.add_argument("--adam_epsilon", default=1e-8, type=float,
help="Epsilon for Adam optimizer.")
self.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
self.add_argument("--num_train_epochs", default=3.0, type=float,
help="Total number of training epochs to perform.")
self.add_argument("--max_steps", default=-1, type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.", )
self.add_argument("--warmup_proportion", default=0.1, type=float,
help="Proportion of training to perform linear learning rate warmup for,E.g., 0.1 = 10% of training.")
self.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.")
self.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.")
self.add_argument("--save_best_checkpoints", action="store_true", help="Save best checkpoint each `--logging_steps`, `--save_step` will be ignore")
self.add_argument("--eval_all_checkpoints", action="store_true", help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number", )
self.add_argument("--predict_checkpoints", type=int, default=0,
help="predict checkpoints starting with the same prefix as model_name ending and ending with step number")
self.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
self.add_argument("--overwrite_output_dir", action="store_true",
help="Overwrite the content of the output directory")
self.add_argument("--seed", type=int, default=42, help="random seed for initialization")
self.add_argument("--fp16", action="store_true",
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", )
self.add_argument("--fp16_opt_level", type=str, default="O1",
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html", )
self.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
return self
class NerProcessor(DataProcessor):
def get_train_examples(self, data_dir, data_file):
"""Gets a collection of :class:`InputExample` for the train set."""
return list(self._create_examples(data_dir, data_file, 'train'))
def get_dev_examples(self, data_dir, data_file):
"""Gets a collection of :class:`InputExample` for the dev set."""
return list(self._create_examples(data_dir, data_file, 'dev'))
def get_test_examples(self, data_dir, data_file):
"""Gets a collection of :class:`InputExample` for the test set."""
return list(self._create_examples(data_dir, data_file, 'test'))
@property
def label2id(self):
return {label: i for i, label in enumerate(self.get_labels())}
@property
def id2label(self):
return {i: label for i, label in enumerate(self.get_labels())}
def get_labels(self):
"""Gets the list of labels for this data set."""
raise NotImplementedError()
def _create_examples(self, data_dir, data_file, mode):
raise NotImplementedError()
def entities2tags(self, entities, seq_len):
ner_tags = ["O"] * seq_len
for t, s, e in entities:
if s < 0 or s >= seq_len or e < 0 or e >= seq_len \
or s > e or ner_tags[s] != "O" or ner_tags[e] != "O":
continue
ner_tags[s] = f"B-{t}"
for i in range(s + 1, e + 1):
ner_tags[i] = f"I-{t}"
return ner_tags
# class ClueNerProcessor(NerProcessor):
# def get_labels(self):
# return [
# "X", "O", "[START]", "[END]",
# "address", "book", "company", "game", "government",
# "movie", "name", "organization", "position","scene",
# ]
# def _create_examples(self, data_dir, data_file, mode):
# data_path = os.path.join(data_dir, data_file)
# with open(data_path, encoding="utf-8") as f:
# lines = [json.loads(line) for line in f.readlines()]
# for sentence_counter, line in enumerate(lines):
# text = line["text"]
# label = line.get("label", None)
# entities = []
# if label is not None:
# ner_tags = ["O"] * len(text)
# for entity_type, entities in line["label"].items():
# for entity_text, entity_positions in entities.items():
# for start_, end_ in entity_positions:
# assert text[start_: end_ + 1] == entity_text
# ner_tags[start_] = f"B-{entity_type}"
# ner_tags[start_ + 1: end_ + 1] = [f"I-{entity_type}"] * (end_ - start_)
# entities = get_entities(ner_tags)
# sentence = (
# sentence_counter,
# {
# "id": f"{mode}-{str(sentence_counter)}",
# "tokens": list(line["text"]),
# "entities": entities if mode in ["train", "dev"] else [],
# }
# )
# yield sentence
class CailNerProcessor(NerProcessor):
def get_labels(self):
return [
"X", "O", "[START]", "[END]",
"address", "book", "company", "game", "government",
"movie", "name", "organization", "position","scene",
]
# TODO:
def _create_examples(self, data_dir, data_file, mode):
data_path = os.path.join(data_dir, data_file)
with open(data_path, encoding="utf-8") as f:
lines = [json.loads(line) for line in f.readlines()]
for sentence_counter, line in enumerate(lines):
text = line["text"]
entities = line.get("entities", None)
sentence = (
sentence_counter,
{
"id": f"{mode}-{str(line['id'])}",
"tokens": list(line["text"]),
"entities": entities if mode in ["train", "dev"] else None,
"sent_start": line["sent_start"],
"sent_end": line["sent_end"],
}
)
yield sentence
class NerDataset(torch.utils.data.Dataset):
def __init__(self, examples, process_pipline=[]):
super().__init__()
self.examples = examples
self.process_pipline = process_pipline
def __getitem__(self, index):
# get example
example = self.examples[index]
# preprocessing
for proc in self.process_pipline:
example = proc(example)
# convert to features
return example
def __len__(self):
return len(self.examples)
@staticmethod
def collate_fn(batch):
max_len = max([b["input_len"] for b in batch])[0].item()
collated = dict()
for k in ["input_ids", "token_type_ids", "attention_mask", "input_len"]:
t = torch.cat([b[k] for b in batch], dim=0)
if k != "input_len": t = t[:, :max_len] # dynamic batch
collated[k] = t
for k in ["spans", "span_mask", "label"]:
if batch[0][k] is None:
collated[k] = None
continue
t = pad_sequence([b[k][0] for b in batch], batch_first=True)
collated[k] = t
return collated
class Example2Feature:
def __init__(self, tokenizer, label2id, max_seq_length, max_span_length):
self.tokenizer = tokenizer
self.label2id = label2id
self.max_seq_length = max_seq_length
self.max_span_length = max_span_length
def __call__(self, example):
return self._convert_example_to_feature(example)
def _encode_span(self, max_length, input_len):
# TODO: sent_start, sent_end
spans = []; span_mask = []
for i in range(max_length):
for j in range(i, min(max_length, i + self.max_span_length)):
spans.append([i, j, j - i + 1])
span_mask.append(0 if i >= input_len else 1)
spans = torch.tensor([spans]) # (1, num_spans, 3)
span_mask = torch.tensor([span_mask]) # (1, num_spans)
return spans, span_mask
def _encode_label(self, entities, spans):
# TODO:
tag_o = self.label2id["O"]
entities = {(b + 1, e + 1): self.label2id[t] for t, b, e in entities}
label = [entities.get((b, e), tag_o) for b, e, l in spans[0]]
label = torch.tensor([label]) # (1, num_spans)
return label
def _convert_example_to_feature(self, example):
id_ = example[1]["id"]
tokens = example[1]["tokens"]
entities = example[1]["entities"]
# encode input
inputs = self.tokenizer.encode_plus(
text=tokens,
text_pair=None,
add_special_tokens=True,
padding="max_length",
truncation="longest_first",
max_length=self.max_seq_length,
is_split_into_words=True,
return_tensors="pt",
)
inputs["input_len"] = inputs["attention_mask"].sum(dim=1) # for special tokens
input_len = inputs["input_len"].item()
# inputs["spans"], inputs["span_mask"] = self._encode_span(self.max_seq_length, input_len)
inputs["spans"], inputs["span_mask"] = self._encode_span(input_len, input_len) # dynamic batch
if entities is None:
inputs["label"] = None
return inputs
# encode label
inputs["label"] = self._encode_label(entities,
inputs["spans"].cpu().numpy().tolist())
return inputs
class FGM():
def __init__(self, model, emb_name, epsilon=1.0):
# emb_name这个参数要换成你模型中embedding的参数名
self.model = model
self.epsilon = epsilon
self.emb_name = emb_name
self.backup = {}
def attack(self):
for name, param in self.model.named_parameters():
if param.requires_grad and self.emb_name in name:
self.backup[name] = param.data.clone()
norm = torch.norm(param.grad)
if norm != 0 and not torch.isnan(norm):
r_at = self.epsilon * param.grad / norm
param.data.add_(r_at)
def restore(self):
for name, param in self.model.named_parameters():
if param.requires_grad and self.emb_name in name:
assert name in self.backup
param.data = self.backup[name]
self.backup = {}
def seed_everything(seed=None, reproducibility=True):
'''
init random seed for random functions in numpy, torch, cuda and cudnn
Args:
seed (int): random seed
reproducibility (bool): Whether to require reproducibility
'''
if seed is None:
seed = int(_select_seed_randomly())
random.seed(seed)
np.random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
if reproducibility:
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
else:
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = False
def init_logger(name, log_file='', log_file_level=logging.NOTSET):
'''
初始化logger
'''
log_format = logging.Formatter(fmt='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S')
logger = logging.getLogger(name)
logger.setLevel(logging.INFO)
console_handler = logging.StreamHandler()
console_handler.setFormatter(log_format)
logger.handlers = [console_handler]
if log_file and log_file != '':
file_handler = logging.FileHandler(log_file)
file_handler.setLevel(log_file_level)
logger.addHandler(file_handler)
return logger
def train(args, model, processor, tokenizer):
""" Train the model """
train_dataset = load_dataset(args, processor, tokenizer, data_type='train')
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size,
collate_fn=NerDataset.collate_fn)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
if args.evaluate_each_epoch:
args.logging_steps = args.save_steps = int(t_total // args.num_train_epochs)
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ["bias", "LayerNorm.weight"]
bert_param_optimizer = list(model.bert.named_parameters())
bert_param_optimizer_ids = [id(p) for n, p in bert_param_optimizer]
other_param_optimizer = [(n, p) for n, p in model.named_parameters() if id(p) not in bert_param_optimizer_ids]
optimizer_grouped_parameters = [
{'params': [p for n, p in bert_param_optimizer if not any(nd in n for nd in no_decay)],
'weight_decay': args.weight_decay, 'lr': args.learning_rate},
{'params': [p for n, p in bert_param_optimizer if any(nd in n for nd in no_decay)],
'weight_decay': 0.0, 'lr': args.learning_rate},
{'params': [p for n, p in other_param_optimizer],
'weight_decay': args.weight_decay, 'lr': args.other_learning_rate}
]
args.warmup_steps = int(t_total * args.warmup_proportion)
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps,
num_training_steps=t_total)
# Check if saved optimizer or scheduler states exist
if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
os.path.join(args.model_name_or_path, "scheduler.pt")):
# Load in optimizer and scheduler states
optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True)
if args.do_fgm:
fgm = FGM(model, emb_name=args.fgm_name, epsilon=args.fgm_epsilon)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size
* args.gradient_accumulation_steps
* (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
)
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
steps_trained_in_current_epoch = 0
# Check if continuing training from a checkpoint
if os.path.exists(args.model_name_or_path) and "checkpoint" in args.model_name_or_path:
# set global_step to gobal_step of last saved checkpoint from model path
global_step = int(args.model_name_or_path.split("-")[-1].split("/")[0])
epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)
logger.info(" Continuing training from checkpoint, will skip to saved global_step")
logger.info(" Continuing training from epoch %d", epochs_trained)
logger.info(" Continuing training from global step %d", global_step)
logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
tr_loss, logging_loss, best_f1 = 0.0, 0.0, 0.0
model.zero_grad()
seed_everything(args.seed) # Added here for reproductibility (even between python 2 and 3)
for epoch_no in range(int(args.num_train_epochs)):
pbar = tqdm(enumerate(train_dataloader), total=len(train_dataloader), desc='Training...')
for step, batch in pbar:
# Skip past any already trained steps if resuming training
if steps_trained_in_current_epoch > 0:
steps_trained_in_current_epoch -= 1
continue
model.train()
batch = {k: v.to(args.device) for k, v in batch.items() if v is not None}
if args.model_type != "distilbert":
# XLM and RoBERTa don"t use segment_ids
if args.model_type.split('_')[0] in ["roberta", "xlnet"]:
batch["token_type_ids"] = None
outputs = model(**batch)
loss = outputs['loss'] # model outputs are always tuple in pytorch-transformers (see doc)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
if args.do_fgm:
fgm.attack()
loss_adv = model(**batch)[0]
if args.n_gpu > 1:
loss_adv = loss_adv.mean()
if args.gradient_accumulation_steps > 1:
loss_adv = loss_adv / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss_adv, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss_adv.backward()
fgm.restore()
pbar.set_description(desc=f"Training[{epoch_no}]... loss={loss.item():.6f}")
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
scheduler.step() # Update learning rate schedule
optimizer.step()
model.zero_grad()
global_step += 1
if args.local_rank in [-1, 0] and args.evaluate_during_training and \
args.logging_steps > 0 and global_step % args.logging_steps == 0:
# Log metrics
print(" ")
if args.local_rank == -1:
# Only evaluate when single GPU otherwise metrics may not average well
eval_results = evaluate(args, model, processor, tokenizer)
logger.info(f"loss={eval_results.pop('loss')}")
for entity, metrics in eval_results.items():
logger.info("{:*^50s}".format(entity))
logger.info("\t".join(f"{metric:s}={value:f}"
for metric, value in metrics.items()))
if args.save_best_checkpoints:
if eval_results["micro avg"]["f1-score"] > best_f1:
best_f1 = eval_results["micro avg"]["f1-score"]
# Save model checkpoint
output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(999999))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = (
model.module if hasattr(model, "module") else model
) # Take care of distributed/parallel training
model_to_save.save_pretrained(output_dir)
torch.save(args, os.path.join(output_dir, "training_args.json"))
logger.info("Saving model checkpoint to %s", output_dir)
tokenizer.save_vocabulary(output_dir)
torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
logger.info("Saving optimizer and scheduler states to %s", output_dir)
if args.local_rank in [-1, 0] and not args.save_best_checkpoints and \
args.save_steps > 0 and global_step % args.save_steps == 0:
# Save model checkpoint
output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = (
model.module if hasattr(model, "module") else model
) # Take care of distributed/parallel training
model_to_save.save_pretrained(output_dir)
torch.save(args, os.path.join(output_dir, "training_args.json"))
logger.info("Saving model checkpoint to %s", output_dir)
tokenizer.save_vocabulary(output_dir)
torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
logger.info("Saving optimizer and scheduler states to %s", output_dir)
logger.info("\n")
if 'cuda' in str(args.device):
torch.cuda.empty_cache()
return global_step, tr_loss / global_step
def evaluate(args, model, processor, tokenizer, prefix=""):
eval_output_dir = args.output_dir
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
os.makedirs(eval_output_dir)
eval_dataset = load_dataset(args, processor, tokenizer, data_type='dev')
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size,
collate_fn=NerDataset.collate_fn)
# Eval!
logger.info("***** Running evaluation %s *****", prefix)
logger.info(" Num examples = %d", len(eval_dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
pbar = tqdm(enumerate(eval_dataloader), total=len(eval_dataloader), desc='Eval...')
if isinstance(model, nn.DataParallel):
model = model.module
model.eval()
y_true = []; y_pred = []
id2label = processor.id2label
for step, batch in pbar:
# forward step
with torch.no_grad():
batch = {k: v.to(args.device) for k, v in batch.items() if v is not None}
if args.model_type != "distilbert":
# XLM and RoBERTa don"t use segment_ids
if args.model_type.split('_')[0] in ["roberta", "xlnet"]:
batch["token_type_ids"] = None
outputs = model(**batch)
tmp_eval_loss = outputs['loss']
logits = outputs['logits']
if args.n_gpu > 1:
tmp_eval_loss = tmp_eval_loss.mean() # mean() to average on multi-gpu parallel evaluating
eval_loss += tmp_eval_loss.item()
nb_eval_steps += 1
# calculate metrics
preds = model.span.decode_batch(logits, batch["spans"], batch["span_mask"])
for pred_no, (pred, input_len) in enumerate(zip(preds, batch["input_len"])):
pred = [(id2label[t], b, e) for t, b, e in pred if id2label[t] != "O"]
pred = processor.entities2tags(pred, input_len - 2)
y_pred.append(pred)
labels = model.span.decode_batch(batch["label"], batch["spans"], batch["span_mask"], is_logits=False)
for label_no, (label, input_len) in enumerate(zip(labels, batch["input_len"])):
label = [(id2label[t], b, e) for t, b, e in label if id2label[t] != "O"]
label = processor.entities2tags(label, input_len - 2)
y_true.append(label)
results = classification_report(y_true, y_pred, digits=6, output_dict=True, scheme=args.scheme)
results['loss'] = eval_loss / nb_eval_steps
return results
def predict(args, model, processor, tokenizer, prefix=""):
pred_output_dir = args.output_dir
if not os.path.exists(pred_output_dir) and args.local_rank in [-1, 0]:
os.makedirs(pred_output_dir)
test_dataset = load_dataset(args, processor, tokenizer, data_type='test')
# Note that DistributedSampler samples randomly
test_sampler = SequentialSampler(test_dataset) if args.local_rank == -1 else DistributedSampler(test_dataset)
test_dataloader = DataLoader(test_dataset, sampler=test_sampler, batch_size=1, collate_fn=NerDataset.collate_fn)
id2label = processor.id2label
# Eval!
logger.info("***** Running prediction %s *****", prefix)
logger.info(" Num examples = %d", len(test_dataset))
logger.info(" Batch size = %d", 1)
results = []
output_predict_file = os.path.join(pred_output_dir, prefix, "test_prediction.json")
if isinstance(model, nn.DataParallel):
model = model.module
pbar = tqdm(enumerate(test_dataloader), total=len(test_dataloader), desc="Predicting...")
for step, batch in pbar:
model.eval()
with torch.no_grad():
batch = {k: v.to(args.device) for k, v in batch.items() if v is not None}
if args.model_type != "distilbert":
# XLM and RoBERTa don"t use segment_ids
if args.model_type.split('_')[0] in ["roberta", "xlnet"]:
batch["token_type_ids"] = None
outputs = model(**batch)
logits = outputs['logits']
preds = model.span.decode_batch(logits, batch["spans"], batch["span_mask"])
pred, input_len = preds[0], batch["input_len"][0]
pred = [(id2label[t], b, e) for t, b, e in pred if id2label[t] != "O"]
pred = processor.entities2tags(pred, input_len - 2)
results.append({
"id": step,
"tag_seq": " ".join(pred),
"entities": get_entities(pred)
})
logger.info("\n")
with open(output_predict_file, "w") as writer:
for record in results:
writer.write(json.dumps(record) + '\n')
PROCESSER_CLASS = {
"cail_ner": CailNerProcessor,
}
MODEL_CLASSES = {
"bert_span": (BertConfigSpanV2, BertSpanV2ForNer, BertTokenizer),
}
def load_dataset(args, processor, tokenizer, data_type='train'):
if args.local_rank not in [-1, 0] and not evaluate:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
if data_type == 'train':
examples = processor.get_train_examples(args.data_dir, args.train_file)
elif data_type == 'dev':
examples = processor.get_dev_examples(args.data_dir, args.dev_file)
else:
examples = processor.get_test_examples(args.data_dir, args.test_file)
if args.local_rank == 0 and not evaluate:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
max_seq_length = args.train_max_seq_length if data_type == 'train' else args.eval_max_seq_length
return NerDataset(examples, process_pipline=[
Example2Feature(tokenizer, processor.label2id, max_seq_length, config.max_span_length),
])
if __name__ == "__main__":
parser = NerArgumentParser()
# if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# # If we pass only one argument to the script and it's the path to a json file,
# # let's parse it to get our arguments.
# args = parser.parse_args_from_json(json_file=os.path.abspath(sys.argv[1]))
# else:
# args = parser.build_arguments().parse_args()
args = parser.parse_args_from_json(json_file="args/bert_span-baseline.json")
# Set seed before initializing model.
seed_everything(args.seed)
# User-defined post initialization
output_dir = f"{args.task_name}-{args.dataset_name}-{args.model_type}-{args.version}-{args.seed}"
if not args.output_dir.endswith(output_dir):
args.output_dir = os.path.join(args.output_dir, output_dir)
args.logging_dir = args.output_dir
os.makedirs(args.output_dir, exist_ok=True)
os.makedirs(args.cache_dir, exist_ok=True)
parser.save_args_to_json(os.path.join(args.output_dir, "training_args.json"), args)
# Setup logging
time_ = time.strftime("%Y-%m-%d-%H:%M:%S", time.localtime())
logger = init_logger(__name__, log_file=os.path.join(args.output_dir, f'{time_}.log'))
# Log on each process the small summary:
logger.warning(
f"Process rank: {args.local_rank}, device: {args.device}, n_gpu: {args.n_gpu}"
+ f"distributed training: {bool(args.local_rank != -1)}, 16-bits training: {args.fp16}"
)
logger.info(f"Training/evaluation parameters {args}")
# # Setup CUDA, GPU & distributed training
# if args.local_rank == -1 or args.no_cuda:
# device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
# args.n_gpu = torch.cuda.device_count()
# else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
# torch.cuda.set_device(args.local_rank)
# device = torch.device("cuda", args.local_rank)
# torch.distributed.init_process_group(backend="nccl")
# args.n_gpu = 1
# args.device = device
args.device, args.n_gpu = torch.device(args.device), 1
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank, args.device, args.n_gpu, bool(args.local_rank != -1), args.fp16, )
# Prepare NER task
args.dataset_name = args.dataset_name.lower()
if args.dataset_name not in PROCESSER_CLASS:
raise ValueError("Task not found: %s" % (args.dataset_name))
processor = PROCESSER_CLASS[args.dataset_name]()
label_list = processor.get_labels()
args.id2label = {i: label for i, label in enumerate(label_list)}
args.label2id = {label: i for i, label in enumerate(label_list)}
num_labels = len(label_list)
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
args.model_type = args.model_type.lower()
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
num_labels=num_labels, max_span_length=args.max_span_length,
cache_dir=args.cache_dir if args.cache_dir else None, )
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
do_lower_case=args.do_lower_case,
cache_dir=args.cache_dir if args.cache_dir else None, )
model = model_class.from_pretrained(args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path),
config=config, cache_dir=args.cache_dir if args.cache_dir else None)
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
model.to(args.device)
logger.info("Training/evaluation parameters %s", args)
# Training
if args.do_train:
global_step, tr_loss = train(args, model, processor, tokenizer)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
# Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
# Create output directory if needed
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
logger.info("Saving model checkpoint to %s", args.output_dir)
# Save a trained model, configuration and tokenizer using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
model_to_save = (
model.module if hasattr(model, "module") else model
) # Take care of distributed/parallel training
model_to_save.save_pretrained(args.output_dir)
tokenizer.save_vocabulary(args.output_dir)
# Good practice: save your training arguments together with the trained model
torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
# Evaluation
results = {}
if args.do_eval and args.local_rank in [-1, 0]:
tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
checkpoints = [args.output_dir]
if args.eval_all_checkpoints:
checkpoints = list(
os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
)
logging.getLogger("pytorch_transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
logger.info("Evaluate the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
prefix = checkpoint.split('/')[-1] if checkpoint.find('checkpoint') != -1 else ""
model = model_class.from_pretrained(checkpoint, config=config)