-
Notifications
You must be signed in to change notification settings - Fork 2
/
lamb.py
157 lines (129 loc) · 5.43 KB
/
lamb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import math
import torch
from torch.optim.optimizer import Optimizer
__all__ = ('Lamb',)
class Lamb(Optimizer):
r"""Implements Lamb algorithm.
It has been proposed in `Large Batch Optimization for Deep Learning:
Training BERT in 76 minutes`__.
Arguments:
params: iterable of parameters to optimize or dicts defining
parameter groups
lr: learning rate (default: 1e-3)
betas: coefficients used for computing
running averages of gradient and its square (default: (0.9, 0.999))
eps: term added to the denominator to improve
numerical stability (default: 1e-8)
weight_decay: weight decay (L2 penalty) (default: 0)
clamp_value: clamp weight_norm in (0,clamp_value) (default: 10)
set to a high value to avoid it (e.g 10e3)
adam: always use trust ratio = 1, which turns this
into Adam. Useful for comparison purposes. (default: False)
debias: debias adam by (1 - beta**step) (default: False)
Example:
>>> import torch_optimizer as optim
>>> optimizer = optim.Lamb(model.parameters(), lr=0.1)
>>> optimizer.zero_grad()
>>> loss_fn(model(input), target).backward()
>>> optimizer.step()
__ https://arxiv.org/abs/1904.00962
Note:
Reference code: https://github.com/cybertronai/pytorch-lamb
"""
def __init__(
self,
params,
lr: float = 1e-3,
betas = (0.9, 0.999),
eps: float = 1e-6,
weight_decay: float = 0,
clamp_value: float = 10,
adam: bool = False,
debias: bool = False,
) -> None:
if lr <= 0.0:
raise ValueError('Invalid learning rate: {}'.format(lr))
if eps < 0.0:
raise ValueError('Invalid epsilon value: {}'.format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError(
'Invalid beta parameter at index 0: {}'.format(betas[0])
)
if not 0.0 <= betas[1] < 1.0:
raise ValueError(
'Invalid beta parameter at index 1: {}'.format(betas[1])
)
if weight_decay < 0:
raise ValueError(
'Invalid weight_decay value: {}'.format(weight_decay)
)
if clamp_value < 0.0:
raise ValueError('Invalid clamp value: {}'.format(clamp_value))
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
self.clamp_value = clamp_value
self.adam = adam
self.debias = debias
super(Lamb, self).__init__(params, defaults)
def step(self, closure = None):
r"""Performs a single optimization step.
Arguments:
closure: A closure that reevaluates the model and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
msg = (
'Lamb does not support sparse gradients, '
'please consider SparseAdam instead'
)
raise RuntimeError(msg)
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(
p, memory_format=torch.preserve_format
)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(
p, memory_format=torch.preserve_format
)
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
beta1, beta2 = group['betas']
state['step'] += 1
# Decay the first and second moment running average coefficient
# m_t
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
# v_t
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
# Paper v3 does not use debiasing.
if self.debias:
bias_correction = math.sqrt(1 - beta2 ** state['step'])
bias_correction /= 1 - beta1 ** state['step']
else:
bias_correction = 1
# Apply bias to lr to avoid broadcast.
step_size = group['lr'] * bias_correction
weight_norm = torch.norm(p.data).clamp(0, self.clamp_value)
adam_step = exp_avg / exp_avg_sq.sqrt().add(group['eps'])
if group['weight_decay'] != 0:
adam_step.add_(p.data, alpha=group['weight_decay'])
adam_norm = torch.norm(adam_step)
if weight_norm == 0 or adam_norm == 0:
trust_ratio = 1
else:
trust_ratio = weight_norm / adam_norm
state['weight_norm'] = weight_norm
state['adam_norm'] = adam_norm
state['trust_ratio'] = trust_ratio
if self.adam:
trust_ratio = 1
p.data.add_(adam_step, alpha=-step_size * trust_ratio)
return loss