diff --git a/prepare_corpus.py b/prepare_corpus.py new file mode 100644 index 0000000..9f87f3c --- /dev/null +++ b/prepare_corpus.py @@ -0,0 +1,44 @@ +import os +from argparse import ArgumentParser + +def get_xxcq_corpus(): + """ 信息抽取 """ + ... + +def get_sfzy_corpus(): + """ 司法摘要 """ + ... + +def get_sfks_corpus(): + """ 司法考试 """ + ... + +def get_aqbq_corpus(): + """ 案情标签 """ + ... + +def get_aljs_corpus(): + """ 案类检索 """ + ... + +def get_bllj_corpus(): + """ 辩论理解 """ + ... + +def get_ydlj_corpus(): + """ 阅读理解 """ + ... + +def main(args): + args.output_dir = os.path.join(args.output_dir, f"mlm-seed{args.seed}") + + ... + +if __name__ == '__main__': + parser = ArgumentParser() + parser.add_argument("--data_dir", type=str, default="data/") + parser.add_argument("--output_dir", type=str, default="data/") + parser.add_argument("--seed", default=42, type=int, help="Seed.") + args = parser.parse_args() + + main(args) diff --git a/run_chinese_ref.py b/run_chinese_ref.py new file mode 100644 index 0000000..4ef018d --- /dev/null +++ b/run_chinese_ref.py @@ -0,0 +1,148 @@ +import argparse +import json +from typing import List + +from ltp import LTP +from transformers.models.bert.tokenization_bert import BertTokenizer + + +def _is_chinese_char(cp): + """Checks whether CP is the codepoint of a CJK character.""" + # This defines a "chinese character" as anything in the CJK Unicode block: + # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) + # + # Note that the CJK Unicode block is NOT all Japanese and Korean characters, + # despite its name. The modern Korean Hangul alphabet is a different block, + # as is Japanese Hiragana and Katakana. Those alphabets are used to write + # space-separated words, so they are not treated specially and handled + # like the all of the other languages. + if ( + (cp >= 0x4E00 and cp <= 0x9FFF) + or (cp >= 0x3400 and cp <= 0x4DBF) # + or (cp >= 0x20000 and cp <= 0x2A6DF) # + or (cp >= 0x2A700 and cp <= 0x2B73F) # + or (cp >= 0x2B740 and cp <= 0x2B81F) # + or (cp >= 0x2B820 and cp <= 0x2CEAF) # + or (cp >= 0xF900 and cp <= 0xFAFF) + or (cp >= 0x2F800 and cp <= 0x2FA1F) # + ): # + return True + + return False + + +def is_chinese(word: str): + # word like '180' or '身高' or '神' + for char in word: + char = ord(char) + if not _is_chinese_char(char): + return 0 + return 1 + + +def get_chinese_word(tokens: List[str]): + word_set = set() + + for token in tokens: + chinese_word = len(token) > 1 and is_chinese(token) + if chinese_word: + word_set.add(token) + word_list = list(word_set) + return word_list + + +def add_sub_symbol(bert_tokens: List[str], chinese_word_set: set()): + if not chinese_word_set: + return bert_tokens + max_word_len = max([len(w) for w in chinese_word_set]) + + bert_word = bert_tokens + start, end = 0, len(bert_word) + while start < end: + single_word = True + if is_chinese(bert_word[start]): + l = min(end - start, max_word_len) + for i in range(l, 1, -1): + whole_word = "".join(bert_word[start : start + i]) + if whole_word in chinese_word_set: + for j in range(start + 1, start + i): + bert_word[j] = "##" + bert_word[j] + start = start + i + single_word = False + break + if single_word: + start += 1 + return bert_word + + +def prepare_ref(lines: List[str], ltp_tokenizer: LTP, bert_tokenizer: BertTokenizer): + ltp_res = [] + + for i in range(0, len(lines), 100): + res = ltp_tokenizer.seg(lines[i : i + 100])[0] + res = [get_chinese_word(r) for r in res] + ltp_res.extend(res) + assert len(ltp_res) == len(lines) + + bert_res = [] + for i in range(0, len(lines), 100): + res = bert_tokenizer(lines[i : i + 100], add_special_tokens=True, truncation=True, max_length=512) + bert_res.extend(res["input_ids"]) + assert len(bert_res) == len(lines) + + ref_ids = [] + for input_ids, chinese_word in zip(bert_res, ltp_res): + + input_tokens = [] + for id in input_ids: + token = bert_tokenizer._convert_id_to_token(id) + input_tokens.append(token) + input_tokens = add_sub_symbol(input_tokens, chinese_word) + ref_id = [] + # We only save pos of chinese subwords start with ##, which mean is part of a whole word. + for i, token in enumerate(input_tokens): + if token[:2] == "##": + clean_token = token[2:] + # save chinese tokens' pos + if len(clean_token) == 1 and _is_chinese_char(ord(clean_token)): + ref_id.append(i) + ref_ids.append(ref_id) + + assert len(ref_ids) == len(bert_res) + + return ref_ids + + +def main(args): + # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) + # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) + with open(args.file_name, "r", encoding="utf-8") as f: + data = f.readlines() + data = [line.strip() for line in data if len(line) > 0 and not line.isspace()] # avoid delimiter like '\u2029' + ltp_tokenizer = LTP(args.ltp) # faster in GPU device + bert_tokenizer = BertTokenizer.from_pretrained(args.bert) + + ref_ids = prepare_ref(data, ltp_tokenizer, bert_tokenizer) + + with open(args.save_path, "w", encoding="utf-8") as f: + data = [json.dumps(ref) + "\n" for ref in ref_ids] + f.writelines(data) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser(description="prepare_chinese_ref") + parser.add_argument( + "--file_name", + type=str, + default="./resources/chinese-demo.txt", + help="file need process, same as training data in lm", + ) + parser.add_argument( + "--ltp", type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path" + ) + parser.add_argument("--bert", type=str, default="./resources/robert", help="resources for Bert tokenizer") + parser.add_argument("--save_path", type=str, default="./resources/ref.txt", help="path to save res") + + args = parser.parse_args() + main(args) + \ No newline at end of file diff --git a/run_mlm_wwm.py b/run_mlm_wwm.py new file mode 100644 index 0000000..c97fc33 --- /dev/null +++ b/run_mlm_wwm.py @@ -0,0 +1,408 @@ +# coding=utf-8 +# Copyright 2020 The HuggingFace Team All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Fine-tuning the library models for masked language modeling (BERT, ALBERT, RoBERTa...) with whole word masking on a +text file or a dataset. + +Here is the full list of checkpoints on the hub that can be fine-tuned by this script: +https://huggingface.co/models?filter=masked-lm +""" +# You can also adapt this script on your own masked language modeling task. Pointers for this are left as comments. + +import json +import logging +import math +import os +import sys +from dataclasses import dataclass, field +from typing import Optional + +from datasets import Dataset, load_dataset + +import transformers +from transformers import ( + CONFIG_MAPPING, + MODEL_FOR_MASKED_LM_MAPPING, + AutoConfig, + AutoModelForMaskedLM, + AutoTokenizer, + DataCollatorForWholeWordMask, + HfArgumentParser, + Trainer, + TrainingArguments, + set_seed, +) +from transformers.trainer_utils import get_last_checkpoint, is_main_process + + +logger = logging.getLogger(__name__) +MODEL_CONFIG_CLASSES = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) +MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) + + +@dataclass +class ModelArguments: + """ + Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. + """ + + model_name_or_path: Optional[str] = field( + default=None, + metadata={ + "help": "The model checkpoint for weights initialization." + "Don't set if you want to train a model from scratch." + }, + ) + model_type: Optional[str] = field( + default=None, + metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, + ) + config_name: Optional[str] = field( + default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} + ) + tokenizer_name: Optional[str] = field( + default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} + ) + cache_dir: Optional[str] = field( + default=None, + metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, + ) + use_fast_tokenizer: bool = field( + default=True, + metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, + ) + model_revision: str = field( + default="main", + metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, + ) + use_auth_token: bool = field( + default=False, + metadata={ + "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script " + "with private models)." + }, + ) + + +@dataclass +class DataTrainingArguments: + """ + Arguments pertaining to what data we are going to input our model for training and eval. + """ + + dataset_name: Optional[str] = field( + default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} + ) + dataset_config_name: Optional[str] = field( + default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} + ) + train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) + validation_file: Optional[str] = field( + default=None, + metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, + ) + train_ref_file: Optional[str] = field( + default=None, + metadata={"help": "An optional input train ref data file for whole word masking in Chinese."}, + ) + validation_ref_file: Optional[str] = field( + default=None, + metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."}, + ) + overwrite_cache: bool = field( + default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} + ) + validation_split_percentage: Optional[int] = field( + default=5, + metadata={ + "help": "The percentage of the train set used as validation set in case there's no validation split" + }, + ) + max_seq_length: Optional[int] = field( + default=None, + metadata={ + "help": "The maximum total input sequence length after tokenization. Sequences longer " + "than this will be truncated. Default to the max input length of the model." + }, + ) + preprocessing_num_workers: Optional[int] = field( + default=None, + metadata={"help": "The number of processes to use for the preprocessing."}, + ) + mlm_probability: float = field( + default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} + ) + pad_to_max_length: bool = field( + default=False, + metadata={ + "help": "Whether to pad all samples to `max_seq_length`. " + "If False, will pad the samples dynamically when batching to the maximum length in the batch." + }, + ) + + def __post_init__(self): + if self.train_file is not None: + extension = self.train_file.split(".")[-1] + assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." + if self.validation_file is not None: + extension = self.validation_file.split(".")[-1] + assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." + + +def add_chinese_references(dataset, ref_file): + with open(ref_file, "r", encoding="utf-8") as f: + refs = [json.loads(line) for line in f.read().splitlines() if (len(line) > 0 and not line.isspace())] + assert len(dataset) == len(refs) + + dataset_dict = {c: dataset[c] for c in dataset.column_names} + dataset_dict["chinese_ref"] = refs + return Dataset.from_dict(dataset_dict) + + +def main(): + # See all possible arguments in src/transformers/training_args.py + # or by passing the --help flag to this script. + # We now keep distinct sets of args, for a cleaner separation of concerns. + + parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) + if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): + # If we pass only one argument to the script and it's the path to a json file, + # let's parse it to get our arguments. + model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) + else: + model_args, data_args, training_args = parser.parse_args_into_dataclasses() + + # Detecting last checkpoint. + last_checkpoint = None + if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: + last_checkpoint = get_last_checkpoint(training_args.output_dir) + if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: + raise ValueError( + f"Output directory ({training_args.output_dir}) already exists and is not empty. " + "Use --overwrite_output_dir to overcome." + ) + elif last_checkpoint is not None: + logger.info( + f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " + "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." + ) + + # Setup logging + logging.basicConfig( + format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", + datefmt="%m/%d/%Y %H:%M:%S", + handlers=[logging.StreamHandler(sys.stdout)], + ) + logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN) + + # Log on each process the small summary: + logger.warning( + f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" + ) + # Set the verbosity to info of the Transformers logger (on main process only): + if is_main_process(training_args.local_rank): + transformers.utils.logging.set_verbosity_info() + transformers.utils.logging.enable_default_handler() + transformers.utils.logging.enable_explicit_format() + logger.info("Training/evaluation parameters %s", training_args) + + # Set seed before initializing model. + set_seed(training_args.seed) + + # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) + # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ + # (the dataset will be downloaded automatically from the datasets Hub). + # + # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called + # 'text' is found. You can easily tweak this behavior (see below). + # + # In distributed training, the load_dataset function guarantee that only one local process can concurrently + # download the dataset. + if data_args.dataset_name is not None: + # Downloading and loading a dataset from the hub. + datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name) + if "validation" not in datasets.keys(): + datasets["validation"] = load_dataset( + data_args.dataset_name, + data_args.dataset_config_name, + split=f"train[:{data_args.validation_split_percentage}%]", + ) + datasets["train"] = load_dataset( + data_args.dataset_name, + data_args.dataset_config_name, + split=f"train[{data_args.validation_split_percentage}%:]", + ) + else: + data_files = {} + if data_args.train_file is not None: + data_files["train"] = data_args.train_file + if data_args.validation_file is not None: + data_files["validation"] = data_args.validation_file + extension = data_args.train_file.split(".")[-1] + if extension == "txt": + extension = "text" + datasets = load_dataset(extension, data_files=data_files) + # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at + # https://huggingface.co/docs/datasets/loading_datasets.html. + + # Load pretrained model and tokenizer + # + # Distributed training: + # The .from_pretrained methods guarantee that only one local process can concurrently + # download model & vocab. + config_kwargs = { + "cache_dir": model_args.cache_dir, + "revision": model_args.model_revision, + "use_auth_token": True if model_args.use_auth_token else None, + } + if model_args.config_name: + config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs) + elif model_args.model_name_or_path: + config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs) + else: + config = CONFIG_MAPPING[model_args.model_type]() + logger.warning("You are instantiating a new config instance from scratch.") + + tokenizer_kwargs = { + "cache_dir": model_args.cache_dir, + "use_fast": model_args.use_fast_tokenizer, + "revision": model_args.model_revision, + "use_auth_token": True if model_args.use_auth_token else None, + } + if model_args.tokenizer_name: + tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs) + elif model_args.model_name_or_path: + tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs) + else: + raise ValueError( + "You are instantiating a new tokenizer from scratch. This is not supported by this script." + "You can do it from another script, save it, and load it from here, using --tokenizer_name." + ) + + if model_args.model_name_or_path: + model = AutoModelForMaskedLM.from_pretrained( + model_args.model_name_or_path, + from_tf=bool(".ckpt" in model_args.model_name_or_path), + config=config, + cache_dir=model_args.cache_dir, + revision=model_args.model_revision, + use_auth_token=True if model_args.use_auth_token else None, + ) + else: + logger.info("Training new model from scratch") + model = AutoModelForMaskedLM.from_config(config) + + model.resize_token_embeddings(len(tokenizer)) + + # Preprocessing the datasets. + # First we tokenize all the texts. + if training_args.do_train: + column_names = datasets["train"].column_names + else: + column_names = datasets["validation"].column_names + text_column_name = "text" if "text" in column_names else column_names[0] + + padding = "max_length" if data_args.pad_to_max_length else False + + def tokenize_function(examples): + # Remove empty lines + examples["text"] = [line for line in examples["text"] if len(line) > 0 and not line.isspace()] + return tokenizer(examples["text"], padding=padding, truncation=True, max_length=data_args.max_seq_length) + + tokenized_datasets = datasets.map( + tokenize_function, + batched=True, + num_proc=data_args.preprocessing_num_workers, + remove_columns=[text_column_name], + load_from_cache_file=not data_args.overwrite_cache, + ) + + # Add the chinese references if provided + if data_args.train_ref_file is not None: + tokenized_datasets["train"] = add_chinese_references(tokenized_datasets["train"], data_args.train_ref_file) + if data_args.validation_ref_file is not None: + tokenized_datasets["validation"] = add_chinese_references( + tokenized_datasets["validation"], data_args.validation_ref_file + ) + # If we have ref files, need to avoid it removed by trainer + has_ref = data_args.train_ref_file or data_args.validation_ref_file + if has_ref: + training_args.remove_unused_columns = False + + # Data collator + # This one will take care of randomly masking the tokens. + data_collator = DataCollatorForWholeWordMask(tokenizer=tokenizer, mlm_probability=data_args.mlm_probability) + + # Initialize our Trainer + trainer = Trainer( + model=model, + args=training_args, + train_dataset=tokenized_datasets["train"] if training_args.do_train else None, + eval_dataset=tokenized_datasets["validation"] if training_args.do_eval else None, + tokenizer=tokenizer, + data_collator=data_collator, + ) + + # Training + if training_args.do_train: + if last_checkpoint is not None: + checkpoint = last_checkpoint + elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path): + checkpoint = model_args.model_name_or_path + else: + checkpoint = None + train_result = trainer.train(resume_from_checkpoint=checkpoint) + trainer.save_model() # Saves the tokenizer too for easy upload + + output_train_file = os.path.join(training_args.output_dir, "train_results.txt") + if trainer.is_world_process_zero(): + with open(output_train_file, "w") as writer: + logger.info("***** Train results *****") + for key, value in sorted(train_result.metrics.items()): + logger.info(f" {key} = {value}") + writer.write(f"{key} = {value}\n") + + # Need to save the state, since Trainer.save_model saves only the tokenizer with the model + trainer.state.save_to_json(os.path.join(training_args.output_dir, "trainer_state.json")) + + # Evaluation + results = {} + if training_args.do_eval: + logger.info("*** Evaluate ***") + + eval_output = trainer.evaluate() + + perplexity = math.exp(eval_output["eval_loss"]) + results["perplexity"] = perplexity + + output_eval_file = os.path.join(training_args.output_dir, "eval_results_mlm_wwm.txt") + if trainer.is_world_process_zero(): + with open(output_eval_file, "w") as writer: + logger.info("***** Eval results *****") + for key, value in sorted(results.items()): + logger.info(f" {key} = {value}") + writer.write(f"{key} = {value}\n") + + return results + + +def _mp_fn(index): + # For xla_spawn (TPUs) + main() + + +if __name__ == "__main__": + main()