We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
https://louishsu.xyz/2020/04/15/Markov-Chain-Monte-Carlo/
前言马尔科夫链蒙特卡罗法(Markov Chain Monte Carlo, MCMC)是以马尔可夫链为概率模型的蒙特卡罗法。通过构建马尔可夫链,基于该马尔可夫链进行随机游走,产生样本序列,并使用这些样本进行近似数值计算。 蒙特卡罗法蒙特卡罗法可应用在随机抽样、数学期望估计、定积分计算等方面。 随机抽样蒙特卡罗法需要解决的问题是,假设概率分布定义已知,通过抽样获得概率分布的随机样本,用这些随机样本
The text was updated successfully, but these errors were encountered:
No branches or pull requests
https://louishsu.xyz/2020/04/15/Markov-Chain-Monte-Carlo/
前言马尔科夫链蒙特卡罗法(Markov Chain Monte Carlo, MCMC)是以马尔可夫链为概率模型的蒙特卡罗法。通过构建马尔可夫链,基于该马尔可夫链进行随机游走,产生样本序列,并使用这些样本进行近似数值计算。 蒙特卡罗法蒙特卡罗法可应用在随机抽样、数学期望估计、定积分计算等方面。 随机抽样蒙特卡罗法需要解决的问题是,假设概率分布定义已知,通过抽样获得概率分布的随机样本,用这些随机样本
The text was updated successfully, but these errors were encountered: