-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmodel.py
168 lines (117 loc) · 6.03 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import os
import pathlib
from typing import *
from itertools import cycle
import torch
import pytorch_lightning as pl
import torch.nn as nn
import pandas as pd
import numpy as np
from loguru import logger
from torch.nn import functional as F
from torch.utils.data import DataLoader, Dataset
from transformers import AutoModel, AutoTokenizer, AdamW, get_linear_schedule_with_warmup
class ClassificationDataset(Dataset):
def __init__(self, instances):
self.instances = instances
def __len__(self):
return len(self.instances)
def __getitem__(self, idx):
return self.instances[idx]
class Classifier(pl.LightningModule):
def __init__(self, config):
super().__init__()
self.hparams = config
self.root_path = pathlib.Path(__file__).parent.absolute()
self.embedder = AutoModel.from_pretrained(config["model"], cache_dir=self.root_path / "model_cache")
self.tokenizer = AutoTokenizer.from_pretrained(config["model"], cache_dir=self.root_path / "model_cache", use_fast=False)
self.embedder.train()
self.label_offset = 0
self.classifier = nn.Linear(self.embedder.config.hidden_size, 1, bias=True)
self.loss = nn.CrossEntropyLoss(ignore_index=-1, reduction="mean")
self.classifier.weight.data.normal_(mean=0.0, std=self.embedder.config.initializer_range)
self.classifier.bias.data.zero_()
def forward(self, batch):
assert len(batch["input_ids"].shape) == 2, "LM only take two-dimensional input"
assert len(batch["attention_mask"].shape) == 2, "LM only take two-dimensional input"
assert len(batch["token_type_ids"].shape) == 2, "LM only take two-dimensional input"
batch["token_type_ids"] = None if "roberta" in self.hparams["model"] else batch["token_type_ids"]
results = self.embedder(input_ids=batch["input_ids"], attention_mask=batch["attention_mask"], token_type_ids=batch["token_type_ids"])
token_embeddings, *_ = results
logits = self.classifier(token_embeddings.mean(dim=1)).squeeze(dim=1)
logits = logits.reshape(-1, batch["num_choice"])
return logits
def training_step(self, batch, batch_idx):
logits = self.forward(batch)
loss = self.loss(logits, batch["labels"])
if self.trainer and self.trainer.use_dp:
loss = loss.unsqueeze(0)
return {
"loss": loss
}
def validation_step(self, batch, batch_idx):
logits = self.forward(batch)
loss = self.loss(logits, batch["labels"])
if self.trainer and self.trainer.use_dp:
loss = loss.unsqueeze(0)
return {
'val_loss': loss,
"val_batch_logits": logits,
"val_batch_labels": batch["labels"],
}
def validation_end(self, outputs):
val_loss_mean = torch.stack([o['val_loss'] for o in outputs]).mean()
val_logits = torch.cat([o["val_batch_logits"] for o in outputs])
val_labels = torch.cat([o["val_batch_labels"] for o in outputs])
return {
'val_loss': val_loss_mean,
"progress_bar": {
"val_accuracy": torch.sum(val_labels == torch.argmax(val_logits, dim=1)) / (val_labels.shape[0] * 1.0)
}
}
def configure_optimizers(self):
t_total = len(self.train_dataloader()) // self.hparams["accumulate_grad_batches"] * self.hparams["max_epochs"]
optimizer = AdamW(self.parameters(), lr=float(self.hparams["learning_rate"]), eps=float(self.hparams["adam_epsilon"]))
return optimizer
@pl.data_loader
def train_dataloader(self):
return DataLoader(self.dataloader(self.root_path / self.hparams["train_x"], self.root_path / self.hparams["train_y"]), batch_size=self.hparams["batch_size"], collate_fn=self.collate)
@pl.data_loader
def val_dataloader(self):
return DataLoader(self.dataloader(self.root_path / self.hparams["val_x"], self.root_path / self.hparams["val_y"]), batch_size=self.hparams["batch_size"], collate_fn=self.collate)
def dataloader(self, x_path: Union[str, pathlib.Path], y_path: Union[str, pathlib.Path] = None):
df = pd.read_json(x_path, lines=True)
if y_path:
labels = pd.read_csv(y_path, sep='\t', header=None).values.tolist()
self.label_offset = np.asarray(labels).min()
df["label"] = np.asarray(labels) - self.label_offset
df["text"] = df.apply(self.transform(self.hparams["formula"]), axis=1)
print(df.head())
return ClassificationDataset(df[["text", "label"]].to_dict("records"))
@staticmethod
def transform(formula):
def warpper(row):
context, choices = formula.split("->")
# (context + question -> answerA|answerB|answerC)
# (obs1 + obs2 -> hyp1|hyp2)
# (ctx_a + ctx_b -> ending_options)
# (goal -> sol1|sol2)
context = context.split("+")
choices = choices.split("|")
context = " ".join(row[x.strip()] for x in context)
choices = row[choices[0]] if len(choices) == 0 else [row[x.strip()] for x in choices]
return list(zip(cycle([context]), choices))
return warpper
def collate(self, examples):
batch_size = len(examples)
num_choice = len(examples[0]["text"])
pairs = [pair for example in examples for pair in example["text"]]
results = self.tokenizer.batch_encode_plus(pairs, add_special_tokens=True, max_length=self.hparams["max_length"], return_tensors='pt', return_attention_masks=True, pad_to_max_length=True)
assert results["input_ids"].shape[0] == batch_size * num_choice, f"Invalid shapes {results['input_ids'].shape} {batch_size, num_choice}"
return {
"input_ids": results["input_ids"],
"attention_mask": results["attention_mask"],
"token_type_ids": results["token_type_ids"],
"labels": torch.LongTensor([e["label"] for e in examples]) if "label" in examples[0] else None,
"num_choice": num_choice
}