-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_single_dnn_experiments.py
112 lines (101 loc) · 2.58 KB
/
run_single_dnn_experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import subprocess
import threading
from datetime import datetime
from pathlib import Path
import time
import argparse
print("Code started")
avgRun = 1
count = 0
warmUp = 0
iteration = 1000
parser = argparse.ArgumentParser()
parser.add_argument('--plan1', nargs='*', type=str, help='path to plan DNN1 file')
parser.add_argument('--plan2', nargs='*', type=str, help='path to plan DNN2 file')
# argString = "--dummy_opt 128 128"
args = parser.parse_args()
print("this is the plan1 path: ", args.plan1[0])
print("this is the plan2 path: ", args.plan2[0])
def process_run(
network_name,
batch,
warmUp,
iteration,
engine,
output_dir,
threadno,
other_network,
TRTEXEC_PATH,
count,
):
dt = datetime.now()
print("iter:", dt)
with open(
output_dir
+ "/"
+ str(network_name)
+ "_"
+ str(other_network)
+ "_"
+ str(threadno)
+ "_results.log",
"w",
) as log_file:
subprocess.run(
[
TRTEXEC_PATH,
"--iterations=" + str(iteration),
"--dumpProfile",
"--batch=" + str(batch),
"--avgRuns=" + str(avgRun),
"--warmUp=" + str(warmUp),
"--duration=0",
f"--loadEngine={engine}",
],
stdout=log_file,
)
# subprocess.run(["nsys","profile","--accelerator-trace=nvmedia","--trace=cuda,opengl,nvtx,nvmedia","--process-scope=system-wide", TRTEXEC_PATH, "--iterations="+str(iteration),"--dumpProfile", "--avgRuns="+str(avgRun), "--warmUp="+str(warmUp), "--duration=0", f"--loadEngine={engine}"], stdout=log_file)
test_network = Path(str(args.plan1[0]))
test_network_2 = Path(str( args.plan2[0]))
network_name = test_network.stem
network_name_2 = test_network_2.stem
print("Network1:", network_name)
print("Network2:", network_name_2)
print("--------------------")
batch1 = 1
batch2 = 1
t1 = threading.Thread(
target=process_run,
args=(
network_name,
batch1,
warmUp,
iteration,
args.plan1[0],
"baseline_singlednn_engine_logs",
1,
network_name_2,
"tensorrt_sharedMem1/bin/trtexec",
count,
),
)
t2 = threading.Thread(
target=process_run,
args=(
network_name_2,
batch2,
warmUp,
iteration - 2,
args.plan2[0],
"baseline_singlednn_engine_logs",
2,
network_name,
"tensorrt_sharedMem2/bin/trtexec",
count,
),
)
t1.start()
time.sleep(1)
t2.start()
t1.join()
t2.join()