-
Notifications
You must be signed in to change notification settings - Fork 1
/
110.balanced-binary-tree.python3.py
81 lines (75 loc) · 1.54 KB
/
110.balanced-binary-tree.python3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
#
# [110] Balanced Binary Tree
#
# https://leetcode.com/problems/balanced-binary-tree/description/
#
# algorithms
# Easy (39.15%)
# Total Accepted: 261.7K
# Total Submissions: 664.5K
# Testcase Example: '[3,9,20,null,null,15,7]'
#
# Given a binary tree, determine if it is height-balanced.
#
# For this problem, a height-balanced binary tree is defined as:
#
#
# a binary tree in which the depth of the two subtrees of every node never
# differ by more than 1.
#
#
# Example 1:
#
# Given the following tree [3,9,20,null,null,15,7]:
#
#
# 3
# / \
# 9 20
# / \
# 15 7
#
# Return true.
#
# Example 2:
#
# Given the following tree [1,2,2,3,3,null,null,4,4]:
#
#
# 1
# / \
# 2 2
# / \
# 3 3
# / \
# 4 4
#
#
# Return false.
#
#
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def isBalanced(self, root):
"""
:type root: TreeNode
:rtype: bool
"""
if root is None:
return True
return self.process(root)[-1]
def process(self, node):
if node is None:
return 0, True
leftHight, isLeft = self.process(node.left)
rightHight, isRight = self.process(node.right)
if not isLeft or not isRight:
return -1, False
if abs(rightHight - leftHight) > 1:
return -1, False
return max(leftHight, rightHight)+1, True