-
Notifications
You must be signed in to change notification settings - Fork 22
/
mpip_compression_pytorch_multi.py
263 lines (224 loc) · 11.9 KB
/
mpip_compression_pytorch_multi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import pandas as pd
from pulp import *
import numpy as np
import argparse
from main import main_with_args as main_per_layer
import os
Debug = False
def mpip_compression(files=None, replace_precisions=None, Degradation=None, noise=None, method='acc', base_precision=8):
data = {}
if files[0] == '':
files = files[1:]
for f, prec in zip(files, replace_precisions):
data[prec] = pd.read_csv(f)
if Degradation is None:
Degradation = 0.18
bops=False
metric = 'MACs' if bops else 'Parameters Size [Elements]'
if method=='acc':
acc=True
elif method=='loss':
acc=False
measurement = 'accuracy' if acc else 'loss'
po = 2 if bops else 1
prob = LpProblem('BitAllocationProblem',LpMinimize)
Combinations={}; accLoss={}; memorySaved={}; Indicators={}; S={}; DeltaL={}
num_layers = len(data[replace_precisions[0]]['base precision']) - 1
base_accuracy = data[replace_precisions[0]][measurement][0]
total_mac=0
for l in range(1,num_layers+1):
layer = data[replace_precisions[0]]['replaced layer'][l]
total_mac+= int(data[replace_precisions[0]][metric][l])
base_performance = int(data[replace_precisions[0]][metric][l]) * (base_precision ** po)
acc_layer = {}
performance = {}
Combinations[layer] = []
accLoss[layer] = {}
memorySaved[layer] = {}
for prec in replace_precisions:
acc_layer[prec] = data[prec][measurement][l]
performance[prec] = int(data[prec][metric][l]) * (prec ** po)
Combinations[layer].append(layer + '_{}W_{}A'.format(prec, prec))
if acc:
accLoss[layer][layer + '_{}W_{}A'.format(prec, prec)] = max(base_accuracy - acc_layer[prec], 1e-6)
else:
accLoss[layer][layer + '_{}W_{}A'.format(prec, prec)] = max(acc_layer[prec] - base_accuracy, 1e-6)
if noise is not None:
accLoss[layer][layer + '_{}W_{}A'.format(prec, prec)] += noise * np.random.normal() * accLoss[layer][layer + '_{}W_{}A'.format(prec, prec)]
memorySaved[layer][layer + '_{}W_{}A'.format(prec, prec)] = base_performance - performance[prec]
Combinations[layer].append(layer + '_{}W_{}A'.format(base_precision, base_precision))
accLoss[layer][layer + '_{}W_{}A'.format(base_precision, base_precision)] = 0
memorySaved[layer][layer + '_{}W_{}A'.format(base_precision, base_precision)] = 0
Indicators[layer] = LpVariable.dicts("indicator"+layer,Combinations[layer],0,1,LpInteger)
S[layer] =LpVariable("S"+layer, 0)
DeltaL[layer] =LpVariable("DeltaL"+layer, 0)
prob += lpSum([S[layer] for layer in S.keys()]) # Objective (minimize acc loss)
total_performance=total_mac*base_precision**po
for l in range(1,num_layers+1): # range(1,3):#
layer = data[replace_precisions[0]]['replaced layer'][l]
prob += lpSum([Indicators[layer][i] * accLoss[layer][i] for i in Combinations[layer]]) == S[layer] # Accuracy loss per layer
prob += lpSum([Indicators[layer][i] for i in Combinations[layer]]) == 1 # Constraint of only one indicator==1
prob += lpSum([Indicators[layer][i] * memorySaved[layer][i] for i in Combinations[layer]]) == DeltaL[layer] # Acc loss per layer
prob += lpSum([DeltaL[layer] for layer in DeltaL.keys()]) >= total_performance*(1- Degradation*(32/base_precision)) # Total acc loss constraint
prob.solve()
LpStatus[prob.status]
print('optimal solution for total degradation D = ' + str(Degradation)+':')
if Debug:
for v in prob.variables():
print(v.name, "=", v.varValue)
print(value(prob.objective))
if (prob.status==-1):
print('Infeasable')
expected_acc_deg = sum([S[layer].varValue for layer in S.keys()])
reduced_performance=sum([DeltaL[layer].varValue for layer in DeltaL.keys()])
sol = {}
memory_reduced = 0
acc_deg = 0
policy = []
all_precisions = replace_precisions + [base_precision]
total_params = {}
for prec in all_precisions:
total_params[prec] = 0
for l in range(1, num_layers + 1):
layer = data[replace_precisions[0]]['replaced layer'][l]
for prec in all_precisions:
if Indicators[layer][layer + '_{}W_{}A'.format(prec, prec)].varValue:
policy.append(prec)
sol[layer] = [prec, prec]
memory_reduced += memorySaved[layer][layer + '_{}W_{}A'.format(prec, prec)]
acc_deg += accLoss[layer][layer + '_{}W_{}A'.format(prec, prec)]
total_params[prec] += int(data[replace_precisions[0]][metric][l])
print('Final Solution: ', sol)
print('Policy: ', policy)
print('Achieved compression: ', (total_performance - memory_reduced) / (total_performance * (32/base_precision)))
if acc:
expected_acc = base_accuracy - acc_deg
else:
expected_acc = base_accuracy + acc_deg
print('Expected acc: ', expected_acc)
for prec in all_precisions:
print('Params % in int {} = {}'.format(prec, total_params[prec] / total_mac))
return sol, expected_acc, (total_performance - reduced_performance) / (total_performance * (32/base_precision)), policy
def get_args():
parser = argparse.ArgumentParser(description='PyTorch Reinforcement Learning')
parser.add_argument('--device-ids', default=[0], type=int, nargs='+',
help='device ids assignment (e.g 0 1 2 3')
parser.add_argument('--ip_method', type=str, default='loss', help='IP optimization target, loss / acc')
parser.add_argument('--model', type=str, default='resnet', help='model to use')
parser.add_argument('--model_vis', type=str, default='resnet50', help='torchvision model name')
parser.add_argument('--num_exp', default=1, type=int, help='number of experiments per compression level')
parser.add_argument('--sigma', default=None, type=float, help='sigma noise to add to measurements')
parser.add_argument('--layer_by_layer_files', type=str, default='./results/resnet50_w8a8_adaquant/resnet.absorb_bn.measure.adaquant.per_layer_accuracy.csv', help='layer degradation csv file')
parser.add_argument('--datasets-dir', type=str, default='/media/drive/Datasets', help='dataset dir')
parser.add_argument('--precisions', type=str, default='8;4', help='precisions, base first, separated by ;')
parser.add_argument('--max_compression', type=float, default='0.25', help='max compression to test')
parser.add_argument('--min_compression', type=float, default='0.13', help='min compression to test')
parser.add_argument('--suffix', type=str, default='', help='suffix to add to all outputs')
parser.add_argument('--do_not_use_adaquant', action='store_true', default=False,
help='use non optimized model')
parser.add_argument('--eval_on_train', action='store_true', default=False,
help='evaluate on calibration data')
args = parser.parse_args()
return args
args = get_args()
compressions = np.arange(args.min_compression, args.max_compression, 0.01)
sigma = args.sigma
num_exp = args.num_exp
ip_method = args.ip_method
files = args.layer_by_layer_files.split(';')
precisions = [int(i) for i in args.precisions.split(';')]
replace_precisions = precisions[1:]
datasets_dir = args.datasets_dir
model = args.model
model_vis = args.model_vis
if args.do_not_use_adaquant:
workdirs = [os.path.join('results', model_vis + '_w{}a{}'.format(i, i)) for i in precisions]
else:
workdirs = [os.path.join('results', model_vis + '_w{}a{}.adaquant'.format(i, i)) for i in precisions]
eval_dir = os.path.join(workdirs[0], model + '.absorb_bn')
perC=True
num_sp_layers=0
model_config = {'batch_norm': False,'measure': False, 'perC': perC}
if model_vis=='resnet18':
model_config['depth'] = 18
output_fname = os.path.join(workdirs[0], 'IP_{}_{}{}.txt'.format(model_vis, ip_method, args.suffix))
eval_dict = {'model': model,
'evaluate': eval_dir,
'dataset': 'imagenet_calib',
'datasets_dir': datasets_dir,
'b': 100,
'model_config': model_config,
'mixed_builder': True,
'device_ids': args.device_ids,
'precisions': precisions}
if args.do_not_use_adaquant:
eval_dict['opt_model_paths'] = [os.path.join(dd, model + '.absorb_bn.measure_perC') for dd in workdirs]
else:
eval_dict['opt_model_paths'] = [os.path.join(dd, model + '.absorb_bn.measure_perC.adaquant') for dd in workdirs]
if args.eval_on_train:
eval_dict['eval_on_train'] = True
solutions = []
expected_accuracies = []
state_dict_path=[]
actual_compressions = []
actual_accuracies = []
actual_losses = []
policies = []
completed = 0
start_from = 0
for Deg in compressions:
if completed < start_from:
completed += 1
solutions.append('')
state_dict_path.append('')
policies.append([])
expected_accuracies.append(0)
actual_compressions.append(0)
actual_accuracies.append(0)
actual_losses.append(0)
continue
attempted_policies = {}
valid_exp = 0
while valid_exp < num_exp:
if Debug:
import pdb; pdb.set_trace()
sol, expect_acc, comp, policy = mpip_compression(files=files, replace_precisions=replace_precisions, Degradation=Deg, noise=sigma, method=ip_method)
if str(policy) in attempted_policies.keys():
continue
valid_exp += 1
eval_dict['names_sp_layers'] = sol
eval_dict['suffix'] = 'comp_{}_{}{}'.format( "{:.2f}".format(Deg), ip_method, args.suffix)
acc, loss = main_per_layer(**eval_dict)
# acc = 0.11; loss = 0.9
# import pdb; pdb.set_trace()
attempted_policies[str(policy)] = acc
solutions.append(sol)
policies.append(policy.copy())
expected_accuracies.append(expect_acc)
actual_compressions.append(comp)
actual_accuracies.append(acc)
actual_losses.append(loss)
state_dict_path.append(eval_dict['evaluate']+'.mixed-ip-results.'+eval_dict['suffix'])
completed += 1
c = 0
for d in compressions:
for exp in range(num_exp):
if c >= completed:
break
print('Compression thr {}, experiment {},state_dict_path {}, compression {}, expected {} {}, actual acc {}, actual loss {}'.format("{:.2f}".format(d), exp, state_dict_path[c], actual_compressions[c],
ip_method, expected_accuracies[c],
actual_accuracies[c], actual_losses[c]))
print('Policy: {}'.format(policies[c]))
print('Configuration = {}'.format(solutions[c]))
c += 1
with open(output_fname, 'w') as pid:
line = 'Compression thr\tExperiment\tstate_dict_path\tActual compression\tExpected {}\tActual Accuracy\tActual loss\tPolicy\tConfiguration\n'.format(ip_method)
pid.write(line)
c = 0
for Deg in compressions:
for exp in range(num_exp):
print('Compression thr {}, experiment {}, state_dict_path {}, actual_compression {}, expected {} {}, actual acc {}, actual loss {}'.format(Deg, exp,state_dict_path[c], actual_compressions[c], ip_method, expected_accuracies[c], actual_accuracies[c], actual_losses[c]))
print('Policy: {}'.format(policies[c]))
line = '{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\n'.format( "{:.2f}".format(Deg), exp, state_dict_path[c], actual_compressions[c], expected_accuracies[c], actual_accuracies[c], actual_losses[c], policies[c], solutions[c])
pid.write(line)
c += 1