-
Notifications
You must be signed in to change notification settings - Fork 22
/
preprocess.py
210 lines (170 loc) · 7.07 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import torch
import numpy as np
import torchvision.transforms as transforms
import random
import PIL
_IMAGENET_STATS = {'mean': [0.485, 0.456, 0.406],
'std': [0.229, 0.224, 0.225]}
_IMAGENET_PCA = {
'eigval': torch.Tensor([0.2175, 0.0188, 0.0045]),
'eigvec': torch.Tensor([
[-0.5675, 0.7192, 0.4009],
[-0.5808, -0.0045, -0.8140],
[-0.5836, -0.6948, 0.4203],
])
}
def scale_crop(input_size, scale_size=None, num_crops=1, normalize=_IMAGENET_STATS):
assert num_crops in [1, 5, 10], "num crops must be in {1,5,10}"
convert_tensor = transforms.Compose([transforms.ToTensor(),
transforms.Normalize(**normalize)])
if num_crops == 1:
t_list = [
transforms.CenterCrop(input_size),
convert_tensor
]
else:
if num_crops == 5:
t_list = [transforms.FiveCrop(input_size)]
elif num_crops == 10:
t_list = [transforms.TenCrop(input_size)]
# returns a 4D tensor
t_list.append(transforms.Lambda(lambda crops:
torch.stack([convert_tensor(crop) for crop in crops])))
if scale_size != input_size:
t_list = [transforms.Resize(scale_size)] + t_list
return transforms.Compose(t_list)
def scale_random_crop(input_size, scale_size=None, normalize=_IMAGENET_STATS):
t_list = [
transforms.RandomCrop(input_size),
transforms.ToTensor(),
transforms.Normalize(**normalize),
]
if scale_size != input_size:
t_list = [transforms.Resize(scale_size)] + t_list
transforms.Compose(t_list)
def pad_random_crop(input_size, scale_size=None, normalize=_IMAGENET_STATS):
padding = int((scale_size - input_size) / 2)
return transforms.Compose([
transforms.RandomCrop(input_size, padding=padding),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(**normalize),
])
def inception_preproccess(input_size, normalize=_IMAGENET_STATS):
return transforms.Compose([
transforms.Resize(input_size),
transforms.CenterCrop(input_size),
transforms.ToTensor(),
transforms.Normalize(**normalize)
])
def inception_color_preproccess(input_size, normalize=_IMAGENET_STATS):
return transforms.Compose([
transforms.RandomResizedCrop(input_size),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(
brightness=0.4,
contrast=0.4,
saturation=0.4,
),
transforms.ToTensor(),
Lighting(0.1, _IMAGENET_PCA['eigval'], _IMAGENET_PCA['eigvec']),
transforms.Normalize(**normalize)
])
def multi_transform(transform_fn, duplicates=1, dim=0):
"""preforms multiple transforms, useful to implement inference time augmentation or
"batch augmentation" from https://openreview.net/forum?id=H1V4QhAqYQ¬eId=BylUSs_3Y7
"""
if duplicates > 1:
return transforms.Lambda(lambda x: torch.stack([transform_fn(x) for _ in range(duplicates)], dim=dim))
else:
return transform_fn
def get_transform(transform_name='imagenet', input_size=None, scale_size=None,
normalize=None, augment=True, cutout=None, autoaugment=False,
duplicates=1, num_crops=1, inception_prep=False):
normalize = normalize or _IMAGENET_STATS
transform_fn = None
if 'imagenet' in transform_name: # inception augmentation is default for imagenet
scale_size = scale_size or (input_size or 256)
input_size = input_size or 224
if inception_prep:
transform_fn = inception_preproccess(input_size,
normalize=normalize)
else:
transform_fn = scale_crop(input_size=input_size, scale_size=scale_size,
num_crops=num_crops, normalize=normalize)
elif 'cifar' in transform_name: # resnet augmentation is default for imagenet
input_size = input_size or 32
if augment:
scale_size = scale_size or 40
if autoaugment:
transform_fn = cifar_autoaugment(input_size, scale_size=scale_size,
normalize=normalize)
else:
transform_fn = pad_random_crop(input_size, scale_size=scale_size,
normalize=normalize)
else:
scale_size = scale_size or 32
transform_fn = scale_crop(input_size=input_size, scale_size=scale_size,
num_crops=num_crops, normalize=normalize)
elif transform_name == 'mnist':
normalize = {'mean': [0.5], 'std': [0.5]}
input_size = input_size or 28
if augment:
scale_size = scale_size or 32
transform_fn = pad_random_crop(input_size, scale_size=scale_size,
normalize=normalize)
else:
scale_size = scale_size or 32
transform_fn = scale_crop(input_size=input_size, scale_size=scale_size,
num_crops=num_crops, normalize=normalize)
if cutout is not None:
transform_fn.transforms.append(Cutout(**cutout))
return multi_transform(transform_fn, duplicates)
class Lighting(object):
"""Lighting noise(AlexNet - style PCA - based noise)"""
def __init__(self, alphastd, eigval, eigvec):
self.alphastd = alphastd
self.eigval = eigval
self.eigvec = eigvec
def __call__(self, img):
if self.alphastd == 0:
return img
alpha = img.new().resize_(3).normal_(0, self.alphastd)
rgb = self.eigvec.type_as(img).clone()\
.mul(alpha.view(1, 3).expand(3, 3))\
.mul(self.eigval.view(1, 3).expand(3, 3))\
.sum(1).squeeze()
return img.add(rgb.view(3, 1, 1).expand_as(img))
class Cutout(object):
"""
Randomly mask out one or more patches from an image.
taken from https://github.com/uoguelph-mlrg/Cutout
Args:
holes (int): Number of patches to cut out of each image.
length (int): The length (in pixels) of each square patch.
"""
def __init__(self, holes, length):
self.holes = holes
self.length = length
def __call__(self, img):
"""
Args:
img (Tensor): Tensor image of size (C, H, W).
Returns:
Tensor: Image with holes of dimension length x length cut out of it.
"""
h = img.size(1)
w = img.size(2)
mask = np.ones((h, w), np.float32)
for n in range(self.holes):
y = np.random.randint(h)
x = np.random.randint(w)
y1 = np.clip(y - self.length // 2, 0, h)
y2 = np.clip(y + self.length // 2, 0, h)
x1 = np.clip(x - self.length // 2, 0, w)
x2 = np.clip(x + self.length // 2, 0, w)
mask[y1: y2, x1: x2] = 0.
mask = torch.from_numpy(mask)
mask = mask.expand_as(img)
img = img * mask
return img