-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfem_maxwellian.lyx
1083 lines (791 loc) · 21.8 KB
/
fem_maxwellian.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#LyX 2.1 created this file. For more info see http://www.lyx.org/
\lyxformat 474
\begin_document
\begin_header
\textclass revtex4-1
\use_default_options true
\maintain_unincluded_children false
\language british
\language_package default
\inputencoding auto
\fontencoding global
\font_roman default
\font_sans default
\font_typewriter default
\font_math auto
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100
\font_tt_scale 100
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation skip
\defskip smallskip
\quotes_language english
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Standard
\begin_inset FormulaMacro
\newcommand{\non}{}
\end_inset
\begin_inset FormulaMacro
\newcommand{\difp}[2]{\frac{\partial#1}{\partial#2}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\br}{{\bf r}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bR}{{\bf R}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bA}{{\bf A}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bB}{{\bf B}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bE}{{\bf E}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bm}{{\bf m}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bn}{{\bf n}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bN}{{\bf N}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bp}{{\bf p}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bF}{{\bf F}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bz}{{\bf z}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bZ}{{\bf Z}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bV}{{\bf V}}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset FormulaMacro
\newcommand{\bv}{{\bf v}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bu}{{\bf u}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bx}{{\bf x}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bX}{{\bf X}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bJ}{{\bf J}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bj}{{\bf j}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bk}{{\bf k}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bTheta}{{\bf \Theta}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\btheta}{\boldsymbol{\theta}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bOmega}{\boldsymbol{\Omega}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bomega}{\boldsymbol{\omega}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\brho}{\boldsymbol{\rho}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\rd}{{\rm d}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\rJ}{{\rm J}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\ph}{\varphi}
\end_inset
\begin_inset FormulaMacro
\newcommand{\te}{\theta}
\end_inset
\begin_inset FormulaMacro
\newcommand{\tht}{\vartheta}
\end_inset
\begin_inset FormulaMacro
\newcommand{\vparkb}{v_{\parallel k b}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\vparkm}{v_{\parallel k m}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\Jpar}{J_{\parallel}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\ppar}{p_{\parallel}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\Bpstar}{B_{\parallel}^{*}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\intpi}{\int\limits _{0}^{2\pi}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\summ}{\sum\limits _{m=-\infty}^{\infty}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\tb}{\tau_{b}(\uv)}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bh}{{\bf h}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\cE}{{\cal E}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\odtwo}[2]{\frac{\rd#1}{\rd#2}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\pdone}[1]{\frac{\partial}{\partial#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\pdtwo}[2]{\frac{\partial#1}{\partial#2}}
{\frac{\partial#1}{\partial#2}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\ds}{{\displaystyle }}
\end_inset
\begin_inset FormulaMacro
\newcommand{\iotabar}{\mbox{\ensuremath{\iota\!\!}-}}
{\tilde{\iota}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\vpar}{v_{\parallel}}
\end_inset
\end_layout
\begin_layout Section
Electromagnetic Field Equations
\end_layout
\begin_layout Standard
The aim of this write-up is to summarise numerical formulations for the
solution of Maxwell's equations
\begin_inset Formula
\begin{eqnarray}
{\rm div}\mathbf{E} & = & 4\pi\rho,\label{eq:divE}\\
{\rm curl}\mathbf{E} & = & -\frac{1}{c}\difp{\bB}t,\label{eq:rotE}\\
{\rm curl}\mathbf{B} & = & \frac{4\pi}{c}\bJ+\frac{1}{c}\difp{\bE}t,\label{eq:rotB}\\
{\rm div}\mathbf{B} & = & 0.\label{eq:divB}
\end{eqnarray}
\end_inset
The continuity equation
\begin_inset Formula
\begin{equation}
{\rm div}\bJ+\difp{\rho}t=0\label{eq:cont}
\end{equation}
\end_inset
for charges and currents follows from
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:divE"
\end_inset
and
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:rotB"
\end_inset
.
\end_layout
\begin_layout Standard
To trivially fulfill and
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:rotE"
\end_inset
and
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:divB"
\end_inset
due to vector identities it is common to use the potential formulations
\begin_inset Formula
\begin{eqnarray}
\bE & = & -\nabla\Phi-\frac{1}{c}\difp{\mathbf{A}}t,\\
\bB & = & {\rm curl}\bA.
\end{eqnarray}
\end_inset
The equations for the potentials from the remaining Maxwell equations are
\begin_inset Formula
\begin{eqnarray}
-\Delta\Phi-\frac{1}{c}\pdone t{\rm div}\mathbf{A} & = & 4\pi\rho,\label{eq:pot1}\\
\left({\rm curl}\,{\rm {\rm curl}}+\frac{1}{c^{2}}\frac{\partial^{2}}{\partial t^{2}}\right)\mathbf{A}+\frac{1}{c}\pdone t\nabla\Phi & = & \frac{4\pi}{c}\mathbf{J}.\label{eq:pot2}
\end{eqnarray}
\end_inset
Their solution is unique up to an arbitrary gauge transformation
\begin_inset Formula
\begin{eqnarray}
\Phi^{\prime} & = & \Phi-\frac{1}{c}\difp{\chi}t,\\
\mathbf{A}^{\prime} & = & \mathbf{A}+\nabla\chi
\end{eqnarray}
\end_inset
with gauge function
\begin_inset Formula $\chi$
\end_inset
.
It is possible to decouple the potential equations by choice of the Lorentz
gauge.
\end_layout
\begin_layout Subsection
Time-harmonic case
\end_layout
\begin_layout Standard
By performing a Fourier transformation
\begin_inset Formula
\begin{align*}
f(t) & =\frac{1}{\sqrt{2\pi}}\int d\omega f(\omega)e^{-i\omega t}
\end{align*}
\end_inset
for all functions one can write the basic equations as
\begin_inset Formula
\begin{eqnarray}
{\rm div}\mathbf{E} & = & 4\pi\rho,\label{eq:divE-1}\\
{\rm curl}\mathbf{E} & = & \frac{i\omega}{c}\bB,\label{eq:rotE-1}\\
{\rm curl}\mathbf{B} & = & \frac{4\pi}{c}\bJ-\frac{i\omega}{c}\bE,\label{eq:rotB-1}\\
{\rm div}\mathbf{B} & = & 0,\label{eq:divB-1}
\end{eqnarray}
\end_inset
the continuity equation as
\begin_inset Formula
\begin{equation}
{\rm div}\bJ-i\omega\rho=0,\label{eq:cont-1}
\end{equation}
\end_inset
and the potential equations as
\begin_inset Formula
\begin{eqnarray}
-\Delta\Phi+\frac{i\omega}{c}{\rm div}\mathbf{A} & = & 4\pi\rho,\label{eq:pot1-1}\\
\left({\rm curl}\,{\rm {\rm curl}}-\frac{\omega^{2}}{c^{2}}\right)\mathbf{A}-\frac{i\omega}{c}\nabla\Phi & = & \frac{4\pi}{c}\mathbf{J}.\label{eq:pot2-1}
\end{eqnarray}
\end_inset
\end_layout
\begin_layout Subsection
Static case
\end_layout
\begin_layout Standard
For the static case
\begin_inset Formula $\omega\rightarrow0$
\end_inset
one can write the basic equations as
\begin_inset Formula
\begin{eqnarray}
{\rm div}\mathbf{E} & = & 4\pi\rho,\label{eq:divE-1-1}\\
{\rm curl}\mathbf{E} & = & 0,\label{eq:rotE-1-1}\\
{\rm curl}\mathbf{B} & = & \frac{4\pi}{c}\bJ,\label{eq:rotB-1-1}\\
{\rm div}\mathbf{B} & = & 0,\label{eq:divB-1-1}
\end{eqnarray}
\end_inset
the continuity equation as
\begin_inset Formula
\begin{equation}
{\rm div}\bJ=0,\label{eq:cont-1-1}
\end{equation}
\end_inset
and the potential equations as
\begin_inset Formula
\begin{eqnarray}
-\Delta\Phi & = & 4\pi\rho,\label{eq:pot1-1-1}\\
{\rm curl}\,{\rm {\rm curl}}\mathbf{A} & = & \frac{4\pi}{c}\mathbf{J}.\label{eq:pot2-1-1}
\end{eqnarray}
\end_inset
\end_layout
\begin_layout Subsubsection
Integrals for Coulomb's equation and Biot Savart law
\end_layout
\begin_layout Standard
For open domains, the electrostatic field fulfilling the divergence equation
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:divE-1-1"
\end_inset
can be written as a volume integral over the electric charge density by
Coulomb's equation
\begin_inset Formula
\begin{align}
\mathbf{E}(\mathbf{x}) & =\int d^{3}x^{\prime}\rho(\mathbf{x}^{\prime})\frac{(\mathbf{x}-\mathbf{x}^{\prime})}{|\mathbf{x}-\mathbf{x}^{\prime}|^{3}}.
\end{align}
\end_inset
The magnetostatic field fulfilling Ampère's law
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:rotB-1-1"
\end_inset
can be written as a volume integral over the current density by the Biot
Savart law
\begin_inset Formula
\begin{align}
\mathbf{B}(\mathbf{x}) & =\frac{1}{c}\int d^{3}x^{\prime}\mathbf{J}(\mathbf{x}^{\prime})\times\frac{(\mathbf{x}-\mathbf{x}^{\prime})}{|\mathbf{x}-\mathbf{x}^{\prime}|^{3}}\label{eq:BiotSavart}
\end{align}
\end_inset
in the free field.
Using the relation
\begin_inset Formula
\begin{align}
\frac{(\mathbf{x}-\mathbf{x}^{\prime})}{|\mathbf{x}-\mathbf{x}^{\prime}|^{3}} & =-\nabla\frac{1}{|\mathbf{x}-\mathbf{x}^{\prime}|}
\end{align}
\end_inset
we can write the two laws for the free field potentials in Coulomb gauge
as
\begin_inset Formula
\begin{align}
\Phi(\mathbf{x}) & =\int d^{3}x^{\prime}\frac{\rho(\mathbf{x}^{\prime})}{|\mathbf{x}-\mathbf{x}^{\prime}|},\\
\mathbf{A}(\mathbf{x}) & =\frac{1}{c}\nabla\times\int d^{3}x^{\prime}\frac{\mathbf{J}(\mathbf{x}^{\prime})}{|\mathbf{x}-\mathbf{x}^{\prime}|}.
\end{align}
\end_inset
\end_layout
\begin_layout Subsubsection
Stream function
\end_layout
\begin_layout Standard
In an arbitrary (also finite) domain
\begin_inset Formula $\Omega$
\end_inset
, the divergence-free current can be represented by
\begin_inset Formula
\begin{equation}
\mathbf{J}=\nabla\times\mathbf{T}
\end{equation}
\end_inset
via the stream function
\begin_inset Formula
\begin{align}
\mathbf{T} & =\frac{1}{4\pi}\int_{\Omega}d^{3}x^{\prime}\mathbf{J}(\mathbf{x}^{\prime})\times\frac{(\mathbf{x}-\mathbf{x}^{\prime})}{|\mathbf{x}-\mathbf{x}^{\prime}|^{3}}.
\end{align}
\end_inset
For the open space
\begin_inset Formula $\Omega=\mathbb{R}^{3}$
\end_inset
, we can identify
\begin_inset Formula
\begin{align}
\mathbf{B} & =\frac{4\pi}{c}\mathbf{T}
\end{align}
\end_inset
by comparison to the Biot Savart law
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:BiotSavart"
\end_inset
.
In the most general case from Ampere's law
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:rotB-1-1"
\end_inset
, the magnetic field is given by
\begin_inset Formula
\begin{align}
\mathbf{B} & =\frac{4\pi}{c}(\mathbf{T}-\nabla\Phi_{m}).\label{eq:BT}
\end{align}
\end_inset
Eq.
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:BT"
\end_inset
may be interpreted as a superposition of two solutions:
\begin_inset Formula $\mathbf{T}$
\end_inset
represents the contributions from the inhomogenous equation
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:rotB-1-1"
\end_inset
in
\begin_inset Formula $\mathbb{R}^{3}$
\end_inset
and
\begin_inset Formula $\nabla\Phi_{m}$
\end_inset
the ones from the boundary value problem of the current-free equation in
the finite domain
\begin_inset Formula $\Omega$
\end_inset
.
To make
\begin_inset Formula $\mathbf{B}$
\end_inset
divergence free, the magnetic scalar potential
\begin_inset Formula $\Phi_{m}$
\end_inset
has to fullfil Poisson's equation
\begin_inset Formula
\begin{align}
\Delta\Phi_{m} & ={\rm div}\mathbf{T}\label{eq:phim}
\end{align}
\end_inset
in
\begin_inset Formula $\Omega$
\end_inset
.
\end_layout
\begin_layout Section
Boundary value problems
\end_layout
\begin_layout Subsection
Magnetostatics
\end_layout
\begin_layout Standard
In the vector potential formulation by
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:pot2-1-1"
\end_inset
, two specific kinds of boundary values are
\end_layout
\begin_layout Enumerate
Dirichlet boundary values for
\begin_inset Formula $\mathbf{A}$
\end_inset
,
\begin_inset Formula
\begin{align}
\mathbf{n}\times\mathbf{A} & =\boldsymbol{\alpha},
\end{align}
\end_inset
where taking the divergence yields
\begin_inset Formula
\begin{align}
{\rm div}(\mathbf{n}\times\mathbf{A}) & =\mathbf{n}\cdot{\rm curl}\mathbf{A}-\mathbf{A}\cdot\underbrace{{\rm curl}\mathbf{n}}_{=0}\nonumber \\
\Rightarrow\mathbf{n}\cdot\mathbf{B} & ={\rm div}\boldsymbol{\alpha}=:b,\label{eq:diva}
\end{align}
\end_inset
and
\end_layout
\begin_layout Enumerate
Neumann boundary values for
\begin_inset Formula $\mathbf{A}$
\end_inset
,
\begin_inset Formula
\begin{align}
\mathbf{n}\times{\rm curl}\mathbf{A} & =\mathbf{K}=\mathbf{n}\times\mathbf{B}.\label{eq:ncurlA}
\end{align}
\end_inset
\end_layout
\begin_layout Standard
In the scalar potential formulation
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:phim"
\end_inset
the two types of boundary conditions swap their role with
\end_layout
\begin_layout Enumerate
Dirichlet boundary values for
\begin_inset Formula $\Phi_{m}$
\end_inset
,
\begin_inset Formula
\begin{equation}
\Phi_{m}=\Phi_{m0},
\end{equation}
\end_inset
which is equivalent to
\begin_inset Formula
\begin{align}
\mathbf{n}\times\mathbf{B} & =\mathbf{K}
\end{align}
\end_inset
TODO: explain why, and
\end_layout
\begin_layout Enumerate
Neumann boundary values for
\begin_inset Formula $\Phi_{m}$
\end_inset
,
\begin_inset Formula
\begin{align}
\frac{\partial\Phi_{m}}{\partial n} & =b=\mathbf{n}\cdot\mathbf{B}.\label{eq:b2}
\end{align}
\end_inset
\end_layout
\begin_layout Section
Open boundary conditions
\end_layout
\begin_layout Subsection
Vector potential
\end_layout
\begin_layout Standard
Let us consider the problem in
\begin_inset Formula $\mathbb{R}^{3}$
\end_inset
:
\begin_inset Formula
\begin{align}
{\rm curl}\,{\rm {\rm curl}}\mathbf{A} & =\frac{4\pi}{c}\mathbf{J},\\
\mathbf{A} & {\rm decaying\, appropriately\, at\,\mbox{\infty}.}
\end{align}
\end_inset
TODO: more accurate formulation.
We formulate an equivalent coupled problem in the bounded domain
\begin_inset Formula $\Omega$
\end_inset
with a magnetic scalar potential formulation in a current free exterior
domain,
\begin_inset Formula
\begin{align}
{\rm curl}\,{\rm {\rm curl}}\mathbf{A} & =\frac{4\pi}{c}\mathbf{J}\,{\rm in\,\Omega},\\
\Delta\Phi_{m} & =0\,{\rm in}\,\mathbb{R}^{3}\backslash\Omega,\\
{\rm compatibility} & {\rm between\,\Phi\, and\,\mathbf{A}\, on\,\Gamma}\\
\Phi_{m} & {\rm decaying\, appropriately\, at\,\mbox{\infty}.}
\end{align}
\end_inset
TODO: formulate more accurately.
The integral current must vanish inside
\begin_inset Formula $\Omega$
\end_inset
for the compatibility condition.
Let us assume the Neumann problem
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:b2"
\end_inset
to be solved on the exterior domain by the linear operator (Neumann-to-Dirichle
t-map)
\begin_inset Formula $L$
\end_inset
acting on the boundary values,
\begin_inset Formula
\begin{align}
\Phi_{m} & =Lb\\
\Rightarrow\mathbf{B} & ={\rm grad}\, Lb.
\end{align}
\end_inset
Now we express
\begin_inset Formula $b$
\end_inset
by
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:diva"
\end_inset
and insert the expression into
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:ncurlA"
\end_inset
:
\begin_inset Formula
\begin{align}
\mathbf{n}\times{\rm curl}\mathbf{A} & =\mathbf{K}\nonumber \\
& =\mathbf{n}\times\mathbf{B}\nonumber \\
& =\mathbf{n}\times{\rm grad}\, Lb\nonumber \\
& =\mathbf{n}\times{\rm grad}\, L({\rm div}(\mathbf{n}\times\mathbf{A})).
\end{align}
\end_inset
Thus, we have reduced the exterior equations to a relation between Dirichlet
and Neumann values for
\begin_inset Formula $\mathbf{A}$
\end_inset
and write the equivalent problem as
\begin_inset Formula
\begin{align}
{\rm curl}\,{\rm {\rm curl}}\mathbf{A} & =\frac{4\pi}{c}\mathbf{J}\,{\rm in\,\Omega},\\
\mathbf{n}\times{\rm curl}\mathbf{A} & =M(\mathbf{n}\times\mathbf{A})\,{\rm on\,\Gamma},
\end{align}
\end_inset
where
\begin_inset Formula
\begin{align}
M\mathbf{u} & =\mathbf{n}\times{\rm grad}\, L({\rm div}\mathbf{u}).
\end{align}
\end_inset
TODO: depending on the form of
\begin_inset Formula $L$
\end_inset
this might be simplified by
\begin_inset Formula
\begin{align}
{\rm curl}(f\mathbf{v}) & =f{\rm curl}\mathbf{v}+{\rm grad}f\times\mathbf{v}.
\end{align}
\end_inset
\end_layout
\begin_layout Section
Variational form and Finite Elements
\end_layout
\begin_layout Standard
For numerical treatment it is convenient to write the equivalent variational
problem to a partial differential equation.
It is the opposite strategy to the one used in mechanics where the equations
of motion are derived from a variational principle and solved in a differential
formulation.
In Lagrangian mechanics, the three equivalent formulations were
\end_layout
\begin_layout Enumerate
Stationary action: The actual motion
\begin_inset Formula $\mathbf{q}(t)$
\end_inset
of a mechanical system makes the action
\begin_inset Formula
\begin{align}
S[\mathbf{q}(t)] & =\int_{t_{0}}^{t_{1}}L(\mathbf{q}(t),\dot{\mathbf{q}}(t),t)dt
\end{align}
\end_inset
stationary (a maximum, minimum or saddle point), where the Lagrangian
\begin_inset Formula $L$
\end_inset
is given by the difference between kinetic and potential energy.
All paths
\begin_inset Formula $\mathbf{q}(t)$
\end_inset
that start at the previously defined
\begin_inset Formula $\mathbf{q}(t_{1})$
\end_inset
and end at
\begin_inset Formula $\mathbf{q}(t_{2})$
\end_inset
are taken into account.
Since
\begin_inset Formula $S$
\end_inset
assigns a scalar value to each possible path
\begin_inset Formula $\mathbf{q}(t)$
\end_inset
, it is also called the action functional.
\end_layout
\begin_layout Enumerate
Vanishing first variation: The first variation of the action
\begin_inset Formula $\delta S[\mathbf{q}(t)]$
\end_inset
must vanish.
\begin_inset Newline newline
\end_inset
We assume that a solution
\begin_inset Formula $\mathbf{q}(t)$
\end_inset
exists and develop the path around this solution by adding a small variation
\begin_inset Formula
\begin{align}
\delta\mathbf{q}(t) & =\varepsilon\boldsymbol{\eta}(t).
\end{align}
\end_inset
\begin_inset Formula $\varepsilon$
\end_inset
is a constant and the function
\begin_inset Formula $\boldsymbol{\eta}(t)$
\end_inset
must vanish at the endpoints.