-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnumerics.lyx
822 lines (626 loc) · 15.3 KB
/
numerics.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
#LyX 2.3 created this file. For more info see http://www.lyx.org/
\lyxformat 544
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass article
\use_default_options true
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry true
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_minted 0
\index Index
\shortcut idx
\color #008000
\end_index
\leftmargin 3cm
\topmargin 3cm
\rightmargin 3cm
\bottommargin 3cm
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Standard
\lang british
\begin_inset FormulaMacro
\newcommand{\tht}{\vartheta}
\end_inset
\begin_inset FormulaMacro
\newcommand{\ph}{\varphi}
\end_inset
\begin_inset FormulaMacro
\newcommand{\balpha}{\boldsymbol{\alpha}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\btheta}{\boldsymbol{\theta}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bJ}{\boldsymbol{J}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bGamma}{\boldsymbol{\Gamma}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bOmega}{\boldsymbol{\Omega}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\d}{\text{d}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\t}[1]{\text{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\m}{\text{m}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\v}[1]{\boldsymbol{#1}}
\end_inset
\end_layout
\begin_layout Standard
\lang british
\begin_inset FormulaMacro
\renewcommand{\t}[1]{\mathbf{#1}}
\end_inset
\end_layout
\begin_layout Section
Global interpolation techniques
\end_layout
\begin_layout Subsection
Series expansion in a Hilbert space
\end_layout
\begin_layout Standard
Consider a complete basis
\begin_inset Formula $\{\ph_{n}\}$
\end_inset
for functions in a Hilbert space with inner product
\begin_inset Formula $\left\langle f,g\right\rangle $
\end_inset
.
This means we can write every function as
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
f(x)=\sum_{n=0}^{\infty}f_{n}\ph_{n}(x).
\end{equation}
\end_inset
To find the coefficients
\begin_inset Formula $f_{n}$
\end_inset
we do a projection
\begin_inset Formula
\begin{equation}
\left\langle \ph_{m},f\right\rangle =\left\langle \ph_{m},\sum_{n=0}^{\infty}f_{n}\ph_{n}\right\rangle =\sum_{n=0}^{\infty}\left\langle \ph_{m},\ph_{n}\right\rangle f_{n}.
\end{equation}
\end_inset
Here we could move the infinite sum and the coefficients
\begin_inset Formula $f_{n}$
\end_inset
out of the inner product, as the latter is linear and continuous in both
arguments.
To solve this problem for
\begin_inset Formula $f_{n}$
\end_inset
we can truncate the sum with
\begin_inset Formula $m,n\leq N$
\end_inset
and solve a set of
\begin_inset Formula $N+1$
\end_inset
linear equations
\begin_inset Formula
\begin{align}
\sum_{n=0}^{N}A_{mn}f_{n} & =b_{m},\quad\text{where}\\
A_{mn} & =\left\langle \ph_{m},\ph_{n}\right\rangle ,\quad b_{m}=\left\langle \ph_{m},f\right\rangle .
\end{align}
\end_inset
If the property of
\series bold
\emph on
orthogonality
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
\left\langle \ph_{m},\ph_{n}\right\rangle =\left\langle \ph_{n},\ph_{n}\right\rangle \delta_{mn}
\]
\end_inset
is fulfilled we don't need to limit ourself to a finite system, but can
solve exactly
\begin_inset Formula
\begin{equation}
f_{n}=\frac{\left\langle \ph_{n},f\right\rangle }{\left\langle \ph_{n},\ph_{n}\right\rangle }.\label{eq:coeff}
\end{equation}
\end_inset
Two bases that are orthogonal under the usual
\begin_inset Formula $L_{2}$
\end_inset
norm
\begin_inset Formula
\begin{equation}
\left\langle f,g\right\rangle =\int_{a}^{b}f(x)g(x)\,\d x
\end{equation}
\end_inset
over some finite interval
\begin_inset Formula $[a,b]$
\end_inset
are Fourier (sine/cosine/complex exponential) series bases and Legendre
polynomials.
There exists a wider class of
\emph on
orthogonal polynomials
\emph default
that are orthogonal with respect to an inner product with a weight function
\begin_inset Formula $w$
\end_inset
with
\begin_inset Formula
\begin{equation}
\left\langle f,g\right\rangle =\int_{a}^{b}w(x)f(x)g(x)\,\d x,
\end{equation}
\end_inset
where either
\begin_inset Formula $a$
\end_inset
or
\begin_inset Formula $b$
\end_inset
or both limits can be infinite.
\end_layout
\begin_layout Subsection
Fourier series
\end_layout
\begin_layout Standard
TODO
\end_layout
\begin_layout Subsection
Legendre polynomials
\end_layout
\begin_layout Standard
Every square-integrable function
\begin_inset Formula $f$
\end_inset
on the interval
\begin_inset Formula $[0,1]$
\end_inset
can be represented as
\begin_inset Formula
\begin{equation}
f(x)=\sum_{n=0}^{\infty}f_{n}P_{n}(x).
\end{equation}
\end_inset
The coefficients
\begin_inset Formula $f_{n}$
\end_inset
can be computed by using the especially simple orthogonality relation with
\begin_inset Formula
\begin{equation}
\left\langle P_{m},P_{n}\right\rangle =\int_{-1}^{1}P_{m}(x)P_{n}(x)\d x=\frac{2}{2n+1}\delta_{mn}.
\end{equation}
\end_inset
According to Eq.
\begin_inset space ~
\end_inset
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:coeff"
\end_inset
coefficients in the Legendre basis are given by
\begin_inset Formula
\begin{equation}
f_{n}=\frac{2n+1}{2}\int_{-1}^{1}P_{n}(x)f(x)\d x.
\end{equation}
\end_inset
\end_layout
\begin_layout Subsubsection
Derivatives
\end_layout
\begin_layout Standard
We can compute derivatives of Legendre polynomials by
\begin_inset Formula
\begin{equation}
(n-m)P_{n}^{(m)}(x)=(2n-1)xP_{n}^{(m)}(x)-(n-1+m)P_{n-2}^{(m)}(x)
\end{equation}
\end_inset
and
\begin_inset Formula
\begin{align}
P_{m}^{(m)}(x) & =\frac{(2m)!}{2^{m}m!},\\
P_{k}^{(m)}(x) & =0\quad\text{for }k<m.
\end{align}
\end_inset
In particular, first derivatives are given by
\begin_inset Formula
\begin{equation}
(n-1)P_{n}^{\prime}(x)=(2n-1)xP_{n}^{\prime}(x)-(n-1+m)P_{n-2}^{\prime}(x)
\end{equation}
\end_inset
starting the recursion with
\begin_inset Formula
\begin{align}
P_{0}^{\prime}(x) & =0,\\
P_{1}^{\prime}(x) & =1.
\end{align}
\end_inset
\end_layout
\begin_layout Subsection
Hierarchical combination of different bases
\end_layout
\begin_layout Standard
The described method seems to be closely related to hierarchical and multigrid/m
ultilevel methods, and coarse grid preconditioners.
The advantage of this method is that we can
\begin_inset Quotes eld
\end_inset
filter out
\begin_inset Quotes erd
\end_inset
coarse scales of the problem by a global basis and treat the remaining
fine scales in a local basis.
This way we get the
\begin_inset Quotes eld
\end_inset
best of both worlds
\begin_inset Quotes erd
\end_inset
and retain global continuity.
\end_layout
\begin_layout Standard
Say we have two (incomplete/finite) bases
\begin_inset Formula $\{\ph_{n}^{(1)}\}$
\end_inset
and
\begin_inset Formula $\{\ph_{k}^{(2)}\}$
\end_inset
.
We want to solve a linear differential equations
\begin_inset Formula
\begin{equation}
Df(x)=g(x)\label{eq:D}
\end{equation}
\end_inset
on some domain.
Now we first solve a discrete equation in the coefficients with
\begin_inset Formula
\begin{equation}
\sum_{n}D_{mn}^{(1)}f_{n}^{(1)}=g_{m}^{(1)},\label{eq:D1}
\end{equation}
\end_inset
where
\begin_inset Formula
\begin{equation}
f^{(1)}(x)=\sum_{n}f_{n}^{(1)}\ph_{n}(x),\quad g^{(1)}(x)=\sum_{n}g_{n}^{(1)}\ph_{n}(x).
\end{equation}
\end_inset
Solving Eq.
\begin_inset space ~
\end_inset
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:D1"
\end_inset
leads an approximate solution of Eq.
\begin_inset space ~
\end_inset
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:D"
\end_inset
but yields the exact relation
\begin_inset Formula
\begin{equation}
Df^{(1)}(x)=g^{(1)}(x).\label{eq:D-1}
\end{equation}
\end_inset
In the second step we subtract the solution from the right-hand side and
try to solve
\begin_inset Formula
\begin{equation}
Df(x)=g(x)-g^{(1)}(x)\equiv g^{(2)}(x).
\end{equation}
\end_inset
Thus
\begin_inset Formula
\begin{equation}
\sum_{n}D_{jk}^{(2)}f_{k}^{(2)}=g_{j}^{(2)}.
\end{equation}
\end_inset
Again the solution is not exact but we obtain rather
\begin_inset Formula
\[
Df^{(2)}(x)=g^{(2)}(x)-g^{(\text{res})}(x)
\]
\end_inset
with some residual
\begin_inset Formula $g^{(\text{res})}$
\end_inset
.
\end_layout
\begin_layout Standard
To sum up, we have split the problem into
\begin_inset Formula
\begin{align}
Df^{(1)}(x) & =g^{(1)}(x)\equiv g(x)-g^{(2)}(x),\\
Df^{(2)}(x) & =g^{(2)}(x)-g^{(\text{res})}(x),
\end{align}
\end_inset
where the first equation is exactly solved since
\begin_inset Formula $g^{(2)}$
\end_inset
is set to the residual with respect to the exact solution.
The approximation appears at the very bottom with
\begin_inset Formula $g^{(\text{res})}(x)$
\end_inset
.
If we take a sum we see that
\begin_inset Formula $g^{(2)}$
\end_inset
cancels and the overall approximate solution
\begin_inset Formula
\[
f^{(h)}=f^{(1)}+f^{(2)}
\]
\end_inset
fulfills
\begin_inset Formula
\begin{align}
Df^{(h)}(x) & =g(x)-g^{(\text{res})}(x).
\end{align}
\end_inset
We could continue this process for an arbitrary number of hierarchy levels
by setting
\begin_inset Formula $g^{(\text{res})}$
\end_inset
to
\begin_inset Formula $g^{(3)}$
\end_inset
and so on.
\end_layout
\begin_layout Section
Root finding
\end_layout
\begin_layout Subsection
Newton's method
\end_layout
\begin_layout Standard
When sufficiently close to a local minimum we use a Taylor expansion
\begin_inset Formula
\begin{equation}
0=f(x_{0})=f(x)+(x_{0}-x)f^{\prime}(x)+\mathcal{O}(|x-x_{0}|^{2})
\end{equation}
\end_inset
to obtain the next best guess
\begin_inset Formula $x_{k+1}\approx x_{0}$
\end_inset
via
\begin_inset Formula
\begin{equation}
x_{k+1}=x_{k}-\frac{f(x_{k})}{f^{\prime}(x_{k})}.\label{eq:xkp1}
\end{equation}
\end_inset
Or in
\begin_inset Formula $n$
\end_inset
dimensions
\begin_inset Formula
\begin{equation}
0=\boldsymbol{F}(\boldsymbol{x}_{0})=\boldsymbol{F}(\boldsymbol{x})+(D_{\boldsymbol{x}}\boldsymbol{F}(\boldsymbol{x}))(\boldsymbol{x}-\boldsymbol{x}_{0})+\mathcal{O}(|\boldsymbol{x}-\boldsymbol{x}_{0}|^{2})
\end{equation}
\end_inset
The equivalent iteration rule to Eq.
\begin_inset space ~
\end_inset
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:xkp1"
\end_inset
would be
\begin_inset Formula
\begin{equation}
\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-(D_{\boldsymbol{x}}\boldsymbol{F}(\boldsymbol{x}))^{-1}\boldsymbol{F}(\boldsymbol{x}_{k}).
\end{equation}
\end_inset
Instead of inverting the Jacobian
\begin_inset Formula $D_{\boldsymbol{x}}\boldsymbol{F}$
\end_inset
here it is often more efficient and numerically stable to solve the linear
system
\begin_inset Formula
\begin{equation}
(D_{\boldsymbol{x}}\boldsymbol{F}(\boldsymbol{x}))\Delta\boldsymbol{x}_{k+1}=-\boldsymbol{F}(\boldsymbol{x}_{k})
\end{equation}
\end_inset
in
\begin_inset Formula $\Delta\boldsymbol{x}_{k+1}\equiv\boldsymbol{x}_{k+1}-\boldsymbol{x}_{k}$
\end_inset
instead.
\end_layout
\begin_layout Standard
Modified versions of Newton's method are
\end_layout
\begin_layout Itemize
Inexact Newton: for inverting the Jacobian, use an interative method (e.g.
GMRES) and stop before convergence reached.
\end_layout
\begin_layout Itemize
Quasi-Newton: use an approximate Jacobian instead of the exact one (Broyden,
Powell hybrid, etc.)
\end_layout
\begin_layout Subsection
Linear extrapolation
\end_layout
\begin_layout Standard
Since
\begin_inset Formula $\boldsymbol{F}$
\end_inset
and
\begin_inset Formula $\nabla\boldsymbol{F}$
\end_inset
are only evaluated at the second-last position
\begin_inset Formula $\boldsymbol{x}_{N-1}$
\end_inset
before convergence is reached at
\begin_inset Formula $\boldsymbol{x}_{N}$
\end_inset
, we cannot directly re-use quantities that have been computed during this
evaluation without another evaluation at
\begin_inset Formula $\boldsymbol{x}_{N}$
\end_inset
.
Consider a quantity
\begin_inset Formula $a(\boldsymbol{x})$
\end_inset
.
In case both
\begin_inset Formula $a(\boldsymbol{x}_{N-1})$
\end_inset
and
\begin_inset Formula $\nabla a(\boldsymbol{x}_{N-1})$
\end_inset
are known from the last iteration step, a good approximation at
\begin_inset Formula $\boldsymbol{x}_{N}$
\end_inset
is given by the linear extrapolation
\begin_inset Formula
\begin{equation}
a(\boldsymbol{x}_{N})=a(\boldsymbol{x}_{N-1})+(\boldsymbol{x}_{N}-\boldsymbol{x}_{N-1})\cdot\nabla a(\boldsymbol{x}_{N-1})+\mathcal{O}(|\boldsymbol{x}_{N}-\boldsymbol{x}_{N-1}|^{2}).
\end{equation}
\end_inset
Thus we can save one evaluation of
\begin_inset Formula $a$
\end_inset
in computations done at the final position
\begin_inset Formula $\boldsymbol{x}_{N}$
\end_inset
after convergence of a root-finding scheme.
\end_layout
\begin_layout Subsection
Error analysis
\end_layout
\begin_layout Standard
See also http://www.math.usm.edu/lambers/mat460/fall09/lecture12.pdf and http://www.m
ath.niu.edu/~dattab/MATH435.2013/ROOT_FINDING.pdf
\end_layout
\begin_layout Standard
Suppose we are performing a fixed-point iteration
\begin_inset Formula
\begin{equation}
x_{k+1}=g(x_{k})
\end{equation}
\end_inset
converging towards
\begin_inset Formula $x^{\star}$
\end_inset
with
\begin_inset Formula $f(x^{\star})=0$
\end_inset
.
In practice we stop either if either
\begin_inset Formula
\begin{equation}
|f(x_{n})|<\text{atol}
\end{equation}
\end_inset
or
\begin_inset Formula
\begin{equation}
\frac{|x_{n}-x_{n-1}|}{|x_{n}|}<\text{rtol}
\end{equation}
\end_inset
or the number of iteration has reached its maximum.
\end_layout
\begin_layout Section
Numerical solution of differential equations
\end_layout
\begin_layout Itemize
Particle methods move particles along characteristics of PDE and/or update
weights
\end_layout
\begin_layout Itemize
FEM
\begin_inset Quotes eld
\end_inset
particles
\begin_inset Quotes erd
\end_inset
live on local support at fixed positions
\end_layout
\begin_layout Itemize
Kernel-based interpolation / smoothing / meshless methods are a
\begin_inset Quotes eld
\end_inset
hybrid
\begin_inset Quotes erd
\end_inset
of particle and FEM
\end_layout
\begin_layout Itemize
FVM
\end_layout
\begin_layout Itemize
DG
\end_layout
\begin_layout Itemize
time-stepping for ODEs
\end_layout
\end_body
\end_document