-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplasma_writeup.lyx
7003 lines (5345 loc) · 150 KB
/
plasma_writeup.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#LyX 2.3 created this file. For more info see http://www.lyx.org/
\lyxformat 544
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass revtex4-1
\options nofootinbib, tightenlines, notitlepage
\use_default_options true
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman "tgpagella" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype true
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize 11
\spacing single
\use_hyperref true
\pdf_title "Plasma Physics"
\pdf_author "Christopher Albert"
\pdf_bookmarks true
\pdf_bookmarksnumbered false
\pdf_bookmarksopen false
\pdf_bookmarksopenlevel 1
\pdf_breaklinks false
\pdf_pdfborder false
\pdf_colorlinks false
\pdf_backref false
\pdf_pdfusetitle true
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine natbib
\cite_engine_type numerical
\biblio_style plainnat
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_minted 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation skip
\defskip smallskip
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Standard
\begin_inset FormulaMacro
\newcommand{\tht}{\vartheta}
\end_inset
\begin_inset FormulaMacro
\newcommand{\ph}{\varphi}
\end_inset
\begin_inset FormulaMacro
\newcommand{\balpha}{\boldsymbol{\alpha}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\btheta}{\boldsymbol{\theta}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bJ}{\boldsymbol{J}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bGamma}{\boldsymbol{\Gamma}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bOmega}{\boldsymbol{\Omega}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\d}{\mathrm{d}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\t}[1]{\text{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\m}{\text{m}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\v}[1]{\boldsymbol{#1}}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset FormulaMacro
\renewcommand{\t}[1]{\mathbf{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\tT}{\boldsymbol{\mathsf{T}}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\tI}{\boldsymbol{\mathsf{I}}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\tP}{\boldsymbol{\mathsf{P}}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\vv}{\boldsymbol{v}}
\end_inset
\end_layout
\begin_layout Title
Plasma Physics
\end_layout
\begin_layout Author
Christopher Albert
\end_layout
\begin_layout Date
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
today
\end_layout
\end_inset
\end_layout
\begin_layout Standard
This document is a write-up for the plasma physics course at TU Graz with
the goal of becoming the new lecture notes.
While derivations in the original lecture notes are kept short, they are
listed more extensively here for better understanding.
Before going to the actual problems, we summarize some general concepts
that are required for treating them.
Most of those concepts have a much wider application than plasma physics,
so it's a good idea to be familiar with them.
\end_layout
\begin_layout Standard
\begin_inset CommandInset toc
LatexCommand tableofcontents
\end_inset
\end_layout
\begin_layout Section*
Common Concepts
\end_layout
\begin_layout Subsection*
\series bold
Concept 1: Tensor calculus
\end_layout
\begin_layout Standard
First we summarize some rules of tensor calculus that are required for certain
tasks within plasma physics.
A summary of rules of vector and tensor calculus is available in the NRL
plasma formulary.
Some rules are
\end_layout
\begin_layout Standard
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
BAC-CAB rule:
\family default
\series default
\shape default
\size default
\emph default
\bar default
\strikeout default
\xout default
\uuline default
\uwave default
\noun default
\color inherit
\begin_inset Formula
\begin{equation}
\v a\times(\v b\times\v c)=(\v c\times\v b)\times\v a=\v b(\v a\cdot\v c)-\v c(\v a\cdot\v b)
\end{equation}
\end_inset
The scalar product is not commutative for tensors:
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
\v a\cdot\nabla\v b=(\v a\cdot\nabla)\v b=\v a\cdot(\nabla\v b)\neq(\nabla\v b)\cdot\v a
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
Cross-product with a curl:
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
\v a\times(\nabla\times\v b)=(\nabla\v b)\cdot\v a-\v a\cdot\nabla\v b\label{eq:eq3}
\end{equation}
\end_inset
Divergence of a dyad:
\begin_inset Formula
\begin{equation}
\nabla\cdot(\v a\v b)=(\v a\cdot\nabla)\v b+(\nabla\cdot\v a)\v b\label{eq:diaddiv}
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
Those rules can be deduced from using index notation for the respective
operations.
For application in research and engineering it is important to note that
tensor calculus can be formulated in a flexible and coordinate-independent
way within the co-contravariant formalism.
More detailed derivations on this very convenient way of treating curvilinear
coordinates can be found in the first chapters of the book of Callen/d'haeselee
r
\begin_inset CommandInset citation
LatexCommand citep
key "dhaeseleer1991"
literal "false"
\end_inset
.
\end_layout
\begin_layout Subsubsection*
\series bold
Taylor expansion of vector fields
\begin_inset CommandInset label
LatexCommand label
name "subsec:Taylor-expansion-of"
\end_inset
\end_layout
\begin_layout Standard
The second order expansion of a vector field
\begin_inset Formula $\v A(\v r)$
\end_inset
around a point
\begin_inset Formula $\v R$
\end_inset
is given by
\begin_inset Formula
\begin{align}
\v A(\v R+\v{\rho}) & =\v A(\v R)+(\v{\rho}\cdot\nabla)\v A(\v R)+(\v{\rho}\v{\rho}:\nabla\nabla))\v A(\v R)+\mathcal{O}(\rho^{3}).
\end{align}
\end_inset
Here
\begin_inset Formula $\v{\rho}\v{\rho}$
\end_inset
and
\begin_inset Formula $\nabla\nabla$
\end_inset
are two dyades combined by a scalar product.
where differentiation doesn't act on
\begin_inset Formula $\v{\rho}$
\end_inset
.
In index notation this means
\begin_inset Formula
\begin{equation}
A_{i}(\v R+\v{\rho})=A_{i}(\v R)+\rho_{j}\partial_{j}A_{i}(\v R)+(\rho_{k}\rho_{l}\partial_{k}\partial_{l})A_{i}(\v R)+\mathcal{O}(\rho^{3}).
\end{equation}
\end_inset
The convention is that a sum is taken automatically over indexes appearing
twice, and we skip the sum sign.
If we consider the dyade
\begin_inset Formula
\begin{equation}
(\nabla\v A)_{kl}=\partial_{k}A_{l}.
\end{equation}
\end_inset
We see that the first order term can be written without brackets as
\begin_inset Formula
\begin{equation}
(\v{\rho}\cdot\nabla)\v A=\v{\rho}\cdot\nabla\v A.
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
For the second order term we combine
\begin_inset Formula
\begin{equation}
\rho_{k}\rho_{l}\partial_{k}\partial_{l}=(\rho_{k}\partial_{k})(\rho_{l}\partial_{l}).
\end{equation}
\end_inset
Thus it can also be written as a dyad itself via
\begin_inset Formula
\begin{equation}
\v{\rho}\v{\rho}:\nabla\nabla=(\v{\rho}\cdot\nabla)(\v{\rho}\cdot\nabla),
\end{equation}
\end_inset
where derivatives don't act on
\begin_inset Formula $\v{\rho}$
\end_inset
.
As an example we can look at Cartesian coordinates
\begin_inset Formula $(x^{1},x^{2})$
\end_inset
in 2D and a vector component
\begin_inset Formula
\begin{align*}
A_{i}(\v R+\v{\rho}) & =A_{i}(\v R)\\
& +\rho^{1}\partial_{1}A_{i}(\v R)+\rho^{2}\partial_{2}A_{i}(\v R)\\
& +(\rho^{1})^{2}\partial_{11}A_{i}(\v R)+2\rho^{1}\rho^{2}\partial_{12}A_{i}(\v R)+(\rho^{2})^{2}\partial_{22}A_{i}(\v R)\\
& +\mathcal{O}(\rho^{3}).
\end{align*}
\end_inset
Here we used the shorthand notation
\begin_inset Formula $\partial_{k}\partial_{l}\equiv\partial_{kl}$
\end_inset
.
Since
\begin_inset Formula $\rho^{1}\rho^{2}\partial_{12}=\rho^{2}\rho^{1}\partial_{21}$
\end_inset
a coefficient
\begin_inset Formula $2$
\end_inset
appears in front of this term in the second order term of the Taylor expansion.
Going to higher orders, such factors will be binomial coefficients in 2D
and multinomial coefficients in
\begin_inset Formula $N$
\end_inset
-D.
\end_layout
\begin_layout Subsection*
\series bold
Concept 2: Fluid mechanics
\end_layout
\begin_layout Standard
Let's look at the general form of fluid equations.
The derivation relies on the intuitive picture what a
\begin_inset Quotes eld
\end_inset
flux
\begin_inset Quotes erd
\end_inset
is.
A rigorous derivation of fluid equations can be performed from individual
particles via kinetic theory.
\end_layout
\begin_layout Standard
We start with the conservation law for mass density
\begin_inset Formula $\rho_{m}(\v r,t)$
\end_inset
known as the continuity equation.
In a fluid moving with velocity
\begin_inset Formula $\v v(\v r,t)$
\end_inset
, mass is transported by the mass flux
\begin_inset Formula
\begin{equation}
\boldsymbol{\Gamma}_{m}(\v r,t)=\rho_{m}(\v r,t)\v v(\v r,t).
\end{equation}
\end_inset
The mass flux is a vector field parallel to
\begin_inset Formula $\v v(\v r,t)$
\end_inset
and of scales with the mass available to move in
\begin_inset Formula $\v x$
\end_inset
quantified by
\begin_inset Formula $\rho_{m}(\v r,t)$
\end_inset
.
Now we consider a volume
\begin_inset Formula $\Omega$
\end_inset
fixed to the lab frame.
\begin_inset Foot
status open
\begin_layout Plain Layout
This is the Eulerian picture, as opposed to the Lagrangian picture, where
a volume is moved and distorted together with the fluid flow.
\end_layout
\end_inset
We compute the total mass inside
\begin_inset Formula $\Omega$
\end_inset
via a volume integral over
\begin_inset Formula $\rho_{m}$
\end_inset
.
If the system's total mass should be conserved, a change in mass in the
volume
\begin_inset Formula $\Omega$
\end_inset
can only be caused by an in-/outflux of mass via
\begin_inset Formula $\v{\Gamma}_{m}$
\end_inset
over its boundary surface
\begin_inset Formula $\partial\Omega$
\end_inset
.
Mathematically we formulate this as a relation between a partial time derivativ
e over the total mass and a surface integral over
\begin_inset Formula $\v{\Gamma}_{m}$
\end_inset
and obtain the law of
\series bold
\begin_inset Newline newline
\end_inset
Mass conservation (integral)
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
\frac{\partial}{\partial t}\int_{\Omega}\rho_{m}(\v r,t)\d V+\int_{\partial\Omega}\boldsymbol{\Gamma}_{m}(\v r,t)\cdot\d\v S=0.
\end{equation}
\end_inset
Note that a positive flux
\begin_inset Formula $\boldsymbol{\Gamma}_{m}$
\end_inset
points outwards, such that it needs to be compensated by a reduction of
integral mass via its partial time derivative.
Now we can exchange derivative and integral, as
\begin_inset Formula $\Omega$
\end_inset
is fixed during time and use the divergence theorem to obtain
\begin_inset Formula
\begin{equation}
\int_{\Omega}\frac{\partial\rho_{m}(\v r,t)}{\partial t}+\nabla\cdot\boldsymbol{\Gamma}_{m}(\v r,t)\d V=0.
\end{equation}
\end_inset
Since this relation is true independent on the choice of
\begin_inset Formula $\Omega$
\end_inset
, it must hold for the integrand.
Thus we obtain the law of
\series bold
\begin_inset VSpace defskip
\end_inset
\begin_inset Newline newline
\end_inset
Mass conservation (differential) / continuity equation
\series default
\begin_inset Formula
\begin{equation}
\frac{\partial\rho_{m}(\v r,t)}{\partial t}+\nabla\cdot\boldsymbol{\Gamma}_{m}(\v r,t)=0.
\end{equation}
\end_inset
or explicitly
\begin_inset Formula
\begin{equation}
\frac{\partial\rho_{m}(\v r,t)}{\partial t}+\nabla\cdot(\rho_{m}(\v r,t)\v v(\v r,t))=0.
\end{equation}
\end_inset
For a single species of particles of mass
\begin_inset Formula $m$
\end_inset
we can write
\begin_inset Formula $\rho_{m}(\v r,t)=m\,n(\v r,t)$
\end_inset
via the number density
\begin_inset Formula $n(\v x,t)$
\end_inset
and write the law of
\series bold
\begin_inset VSpace defskip
\end_inset
\begin_inset Newline newline
\end_inset
Number density conservation
\series default
\begin_inset Formula
\begin{equation}
\frac{\partial n(\v r,t)}{\partial t}+\nabla\cdot(\v v(\v r,t)n(\v r,t))=0.
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
The second conserved quantity we are interested in is the momentum density
\begin_inset Formula $\boldsymbol{p}$
\end_inset
in absence of external forces.
Since momentum is a vector, its flux
\begin_inset Formula $\boldsymbol{\Gamma}_{\v p}$
\end_inset
must be a rank-2 tensor.
The result is still the same as for mass or any other conservation law,
yielding the
\series bold
\begin_inset VSpace defskip
\end_inset
\begin_inset Newline newline
\end_inset
Total momentum conservation
\series default
\series bold
law (differential)
\series default
\begin_inset Formula
\begin{equation}
\frac{\partial\boldsymbol{p}(\v r,t)}{\partial t}+\nabla\cdot\boldsymbol{\Gamma}_{\v p}(\v r,t)=0.
\end{equation}
\end_inset
In case of external forces, they would appear as a
\emph on
source
\emph default
on the right-hand side as force densities
\begin_inset Formula $\boldsymbol{f}$
\end_inset
.
The overall momentum density consists of
\emph on
kinematic fluid
\emph default
\begin_inset Formula $\v p^{\text{fl}}=\rho_{m}\v v$
\end_inset
and
\emph on
electromagnetic
\emph default
momentum density
\begin_inset Formula $\v p^{\text{EM}}=\boldsymbol{S}/c^{2}$
\end_inset
, where
\begin_inset Formula $\boldsymbol{S}$
\end_inset
is the Poynting vector.
The momentum flux
\begin_inset Formula $\boldsymbol{\Gamma}_{\v p}$
\end_inset
consists of a fluid part
\begin_inset Foot
status open
\begin_layout Plain Layout
Here
\begin_inset Formula $\t T=\boldsymbol{v}\v w$
\end_inset
means the outer product
\begin_inset Formula $\boldsymbol{v}\otimes\boldsymbol{w}$
\end_inset
, being a rank-2 tensor with Cartesian components
\begin_inset Formula $T_{ij}=v_{i}w_{j}$
\end_inset
.
\end_layout
\end_inset
\begin_inset Formula $\boldsymbol{\Gamma}_{\v p}^{\text{fl}}=\v v\v p_{\text{fl}}$
\end_inset
, but is also influenced by
\emph on
thermodynamic
\emph default
effects, namely the width of the distribution around the average velocity
\begin_inset Formula $\boldsymbol{v}$
\end_inset
.
We separate out
\emph on
electrodynamic
\emph default
and
\emph on
thermodynamic
\emph default
effects in the total momentum conservation law, such that they appear as
forces on the right-hand side, leading to the
\series bold
\begin_inset VSpace defskip
\end_inset
\begin_inset Newline newline
\end_inset
Kinematic fluid momentum law
\series default
\begin_inset Formula
\begin{equation}
\frac{\partial\v p^{\mathrm{fl}}(\v r,t)}{\partial t}+\nabla\cdot(\v v(\v r,t)\v p^{\mathrm{fl}}(\v r,t))=-\nabla p(\v r,t)+q\left(\v E(\v r,t)+\v v(\v r,t)\times\v B(\v r,t)\right).
\end{equation}
\end_inset
In Cartesian coordinates the divergence of a rank-2 tensor
\begin_inset Formula $\t T$
\end_inset
is a column vector whose components are the divergence of tensor columns,
so
\begin_inset Formula
\begin{equation}
\nabla\cdot\t T=\left(\begin{array}{c}
\nabla\cdot\boldsymbol{T}_{\cdot1}\\
\nabla\cdot\boldsymbol{T}_{\cdot2}\\
\nabla\cdot\boldsymbol{T}_{\cdot3}
\end{array}\right)=\left(\begin{array}{c}
\frac{\partial}{\partial x^{1}}T_{11}+\frac{\partial}{\partial x^{2}}T_{21}+\frac{\partial}{\partial x^{3}}T_{31}\\
\frac{\partial}{\partial x^{1}}T_{12}+\frac{\partial}{\partial x^{2}}T_{22}+\frac{\partial}{\partial x^{3}}T_{32}\\
\frac{\partial}{\partial x^{1}}T_{13}+\frac{\partial}{\partial x^{2}}T_{23}+\frac{\partial}{\partial x^{3}}T_{33}
\end{array}\right).
\end{equation}
\end_inset
Now we can further modify this using mass continuity by using a rule from
tensor calculus to write the flux vector
\begin_inset Formula $\nabla\cdot\boldsymbol{\Gamma}_{\v p}^{\text{fl}}$
\end_inset
as
\begin_inset Formula
\begin{align}
\nabla\cdot\boldsymbol{\Gamma}_{\v p}^{\mathrm{fl}}=\nabla\cdot(\v v\v p^{\mathrm{fl}}) & =\v p^{\mathrm{fl}}(\nabla\cdot\v v)+(\v v\cdot\nabla)\v p^{\mathrm{fl}}.
\end{align}
\end_inset
Here,
\begin_inset Formula $\boldsymbol{v}\cdot\nabla$
\end_inset
performs a convective derivative, i.e.
\begin_inset Formula
\begin{equation}
(\v v\cdot\nabla)\boldsymbol{w}=v_{1}\frac{\partial}{\partial x^{1}}\boldsymbol{w}+v_{2}\frac{\partial}{\partial x^{2}}\boldsymbol{w}+v_{3}\frac{\partial}{\partial x^{3}}\boldsymbol{w}.
\end{equation}
\end_inset
Now let's look back and see that
\emph on
incidentally
\emph default
(well, not entirely) the
\emph on
fluid momentum density
\emph default
\begin_inset Formula $\v p^{\mathrm{fl}}=\rho_{m}\v v=\boldsymbol{\Gamma}_{m}$
\end_inset
matches the
\emph on
mass flux
\emph default
defined before.
\end_layout
\begin_layout Section
Basics
\end_layout
\begin_layout Subsection*
1.1 Criteria for a plasma
\end_layout
\begin_layout Subsection*
\series bold
Problem 1: Work needed to introduce charge density fluctuation
\end_layout
\begin_layout Standard
see lecture notes
\end_layout
\begin_layout Subsection*
\series bold
Problem 2: Debye shielding - the easy way
\end_layout
\begin_layout Standard
see lecture notes
\end_layout
\begin_layout Subsection*
\series bold
Problem 3: Debye shielding - the hard way
\end_layout
\begin_layout Standard
see lecture notes
\end_layout
\begin_layout Standard
Helmholtz equation
\begin_inset Formula
\begin{equation}
\Delta\Phi(\v x)-\frac{1}{\lambda^{2}}\Phi(\v x)=-\frac{Q}{\varepsilon_{0}}\delta(\v x).
\end{equation}
\end_inset
Linear problem and infinite or periodic space: Use spatial Fourier transform.
Be careful about normalization with
\begin_inset Formula $1/\sqrt{2\pi}$
\end_inset
(symmetric, unitary) or
\begin_inset Formula $1/(2\pi)$
\end_inset
(non-unitary) on one of either transform or inverse transform.
\end_layout
\begin_layout Standard
1-dimensional Fourier transform of
\begin_inset Formula $\delta(x)$
\end_inset
:
\begin_inset Formula
\begin{align}
\mathcal{F}\delta(x) & =\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\d x\,\delta(x)e^{-ikx}\nonumber \\
& =\frac{e^{-ik0}}{\sqrt{2\pi}}=\frac{1}{\sqrt{2\pi}}.
\end{align}
\end_inset
\begin_inset Formula $N$
\end_inset
-dimensional Fourier transform of
\begin_inset Formula $\delta(\v x)$
\end_inset
:
\begin_inset Formula
\begin{align}
\mathcal{F}_{N}\delta(\v x) & =\frac{1}{(2\pi)^{N/2}}\int_{-\infty}^{\infty}\d^{N}x\,\delta(\v x)e^{-i\v k\cdot\v x}\nonumber \\
& =\frac{e^{-i\v k\cdot\v 0}}{(2\pi)^{N/2}}=\frac{1}{(2\pi)^{N/2}}.
\end{align}
\end_inset
So in our 3D equation:
\begin_inset Formula
\begin{equation}
-k^{2}\Phi(\v k)-\frac{1}{\lambda^{2}}\Phi(\v k)=-\frac{Q}{(2\pi)^{3/2}\varepsilon_{0}}.
\end{equation}
\end_inset
Solution in
\begin_inset Formula $\v k$
\end_inset
-space:
\begin_inset Formula
\begin{equation}
\Phi(\v k)=\frac{Q}{(2\pi)^{3/2}\varepsilon_{0}(k^{2}+1/\lambda_{D}^{\,2})}.
\end{equation}
\end_inset
Solution in real space:
\begin_inset Formula
\begin{align}
\Phi(\v x)=\mathcal{F}_{3}^{\,-1}\Phi(\v k) & =\frac{1}{(2\pi)^{3/2}}\int_{-\infty}^{\infty}\d^{3}k\,\Phi(\v k)\\
& =\frac{1}{(2\pi)^{3/2}}\int_{-\infty}^{\infty}\d^{3}k\,\frac{Q}{(2\pi)^{3/2}\varepsilon_{0}(k^{2}+1/\lambda_{D}^{\,2})}e^{i\v k\cdot\v x}.
\end{align}
\end_inset
How do we represent solve this? Represent scalar product by
\begin_inset Formula
\begin{equation}
\v k\cdot\v x=|\v k|\,|\v x|\cos\tht_{(k)}=kr\cos\tht_{kx}
\end{equation}
\end_inset
where
\begin_inset Formula $k=|\v k|$
\end_inset
,
\begin_inset Formula $r=|\v x|$
\end_inset