-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrmps.lyx
631 lines (478 loc) · 11.4 KB
/
rmps.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
#LyX 2.3 created this file. For more info see http://www.lyx.org/
\lyxformat 544
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass article
\use_default_options true
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_minted 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Section*
\begin_inset FormulaMacro
\newcommand{\tht}{\vartheta}
\end_inset
\begin_inset FormulaMacro
\newcommand{\ph}{\varphi}
\end_inset
\begin_inset FormulaMacro
\newcommand{\balpha}{\boldsymbol{\alpha}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\btheta}{\boldsymbol{\theta}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bJ}{\boldsymbol{J}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bGamma}{\boldsymbol{\Gamma}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bOmega}{\boldsymbol{\Omega}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\d}{\text{d}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\t}[1]{\text{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\m}{\text{m}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\v}[1]{\boldsymbol{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\de}[1]{\mathcal{#1}}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset FormulaMacro
\renewcommand{\t}[1]{\mathbf{#1}}
\end_inset
\end_layout
\begin_layout Section*
MHD equilibrium in density form
\end_layout
\begin_layout Standard
MHD equilibrium equations in vectorial notation relating current density
\begin_inset Formula $\v J$
\end_inset
, magnetic flux density
\begin_inset Formula $\v B$
\end_inset
and magnetic field
\begin_inset Formula $\v H$
\end_inset
are the force balance equation
\begin_inset Formula
\begin{equation}
\v J\times\v B=\nabla p
\end{equation}
\end_inset
and the magnetostatic limit Maxwell's equations - namely source-freeness
of
\begin_inset Formula $\v B$
\end_inset
, Ampère's law linking
\begin_inset Formula $\v J$
\end_inset
and
\begin_inset Formula $\v H$
\end_inset
, and the linear constitutive relation, linking
\begin_inset Formula $\v B$
\end_inset
and
\begin_inset Formula $\v H$
\end_inset
by a given permeability tensor
\begin_inset Formula $\hat{\mu}$
\end_inset
, equal to
\begin_inset Formula $\mu_{0}$
\end_inset
in a vacuum background,
\begin_inset Formula
\begin{align}
\nabla\cdot\v B & =0,\label{eq:divfree}\\
\nabla\times\v H & =\v J,\\
\v H & =\hat{\mu}^{-1}\v B.
\end{align}
\end_inset
To fulfill divergence-freeness
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:divfree"
\end_inset
often a vector potential
\begin_inset Formula $\v A$
\end_inset
is introduced, replacing
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:divfree"
\end_inset
by
\begin_inset Formula
\begin{equation}
\v B=\nabla\times\v A.
\end{equation}
\end_inset
This makes the solution in
\begin_inset Formula $\v A$
\end_inset
non-unique up to gauge freedom of adding
\begin_inset Formula $\nabla\chi$
\end_inset
to it.
\end_layout
\begin_layout Standard
The natural way to represent the involved vector fields in curvilinear geometry
is via covariant vector field components for
\begin_inset Formula $\v A$
\end_inset
and
\begin_inset Formula $\v H$
\end_inset
, and contravariant vector density components for
\begin_inset Formula $\v B$
\end_inset
and
\begin_inset Formula $\v J$
\end_inset
, and covariant vector density components for the force density
\begin_inset Formula $\v F=\v J\times\v B=\nabla p$
\end_inset
matching Lorentz force and thermodynamic force by the pressure gradient.
Those are usual components weighted via the Jacobian
\begin_inset Formula $\sqrt{g}$
\end_inset
with
\begin_inset Formula
\begin{align}
\de J^{k} & =\sqrt{g}J^{k},\\
\de B^{k} & =\sqrt{g}B^{k},\\
\mathcal{F}_{k} & =\sqrt{g}F_{k}=\sqrt{g}\partial_{k}p.
\end{align}
\end_inset
This way we obtain metric-free components of the Lorentz force
\begin_inset Formula
\[
\mathcal{F}_{i}=\varepsilon_{ijk}\mathcal{J}^{j}\mathcal{B}^{k}
\]
\end_inset
and field equations
\begin_inset Formula
\begin{align}
\partial_{i}\mathcal{B}^{i} & =0,\label{eq:divfree2}\\
\varepsilon^{ijk}\partial_{i}H_{j} & =\mathcal{J}^{k}.
\end{align}
\end_inset
Again, Eq.
\begin_inset space ~
\end_inset
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:divfree2"
\end_inset
can be replaced by
\begin_inset Formula
\begin{equation}
\mathcal{B}^{i}=\varepsilon^{ijk}\partial_{j}A_{k},
\end{equation}
\end_inset
with
\begin_inset Formula $A_{k}$
\end_inset
replacing unknowns
\begin_inset Formula $\mathcal{B}^{i}$
\end_inset
up to gauge freedom.
Equations involving the metric are relation to thermodynamic force and
consitutive relation,
\begin_inset Formula
\begin{align}
\mathcal{F}_{i} & =\sqrt{g}\partial_{i}p,\\
H_{i} & =\mu_{ij}\mathcal{B}^{j}.
\end{align}
\end_inset
The metric enters the permeability tensor density components
\begin_inset Formula $\mu_{jk}$
\end_inset
.
For a vacuum background we have
\begin_inset Formula
\begin{equation}
H_{j}=\frac{g_{jk}}{\mu_{0}}B^{k}=\frac{g_{jk}}{\mu_{0}\sqrt{g}}\mathcal{B}^{k}.
\end{equation}
\end_inset
\end_layout
\begin_layout Section*
Flux coordinates
\end_layout
\begin_layout Standard
For axisymmetric equilibria, the Hamiltonian form of
\begin_inset Formula $\v B$
\end_inset
proves the existence of nested flux surfaces.
We use flux-surface aligned coordinates
\begin_inset Formula $(r,\tht,\ph)$
\end_inset
with flux surfaces labelled by the radial coordinate
\begin_inset Formula $r$
\end_inset
.
Taking a scalar product of the force-balance equation by
\begin_inset Formula $\v B$
\end_inset
or
\begin_inset Formula $\v J$
\end_inset
yields the result that both vector fields have field-lines lying on surfaces
of constant
\begin_inset Formula $p=p(r)$
\end_inset
.
Take unperturbed field to be straight in
\begin_inset Formula $\tht,\ph$
\end_inset
on flux surfaces
\begin_inset Formula $r=\mathrm{const.}$
\end_inset
In a metric-free representation, we use covariant components of the vector
potential depending only on the radial coordinate
\series bold
\begin_inset Formula
\begin{equation}
A_{r}=0,\quad A_{\tht}=A_{\tht}(r),\quad A_{\ph}=A_{\ph}(r).
\end{equation}
\end_inset
\series default
Taking the magnetic flux density
\begin_inset Formula $\v B=\nabla\times\v A$
\end_inset
yields contravariant density components depending only on
\begin_inset Formula $r$
\end_inset
with
\begin_inset Formula
\begin{align}
\mathcal{B}^{r}(r) & =\sqrt{g}B^{r}=\varepsilon^{rjk}\partial_{j}A_{k}=0\\
\mathcal{B}^{\tht}(r) & =\sqrt{g}B^{\tht}=\varepsilon^{\tht jk}\partial_{j}A_{k}=-\frac{\d A_{\ph}(r)}{\d r},\\
\mathcal{B}^{\ph}(r) & =\sqrt{g}B^{\tht}=\varepsilon^{\ph jk}\partial_{j}A_{k}=\frac{\d A_{\tht}(r)}{\d r}.
\end{align}
\end_inset
The magnetic field is then represented in contravariant density form by
\begin_inset Formula
\begin{align}
\v B(\v x) & =\sqrt{g(\v x)}^{-1}(\de B^{\tht}(r)\v e_{\tht}(\v x)+\de B^{\ph}(r)\v e_{\ph}(\v x))\nonumber \\
& =\sqrt{g(\v x)}^{-1}\de B^{\ph}(r)(\iota(r)\v e_{\tht}(\v x)+\v e_{\ph}(\v x)).
\end{align}
\end_inset
with rotational transform
\begin_inset Formula
\begin{equation}
\iota(r)=\frac{\de B^{\tht}(r)}{\de B^{\ph}(r)}=\frac{B^{\tht}(\v x)}{B^{\ph}(\v x)}.
\end{equation}
\end_inset
Covariant density components of the Lorentz force are
\begin_inset Formula
\begin{align*}
\mathcal{F}_{r}(\v x) & =\mathcal{J}^{\tht}(\v x)\mathcal{B}^{\ph}(r)-\mathcal{J}^{\ph}(\v x)\mathcal{B}^{\tht}(r)\\
\mathcal{F}_{\tht}(\v x) & =0\\
\mathcal{F}_{\ph}(\v x) & =0
\end{align*}
\end_inset
where the metric enters the covariant thermodynamic force density components
via the counteracting pressure
\begin_inset Formula
\begin{equation}
\mathcal{F}_{r}(\v x)=\sqrt{g(\v x)}p^{\prime}(r).
\end{equation}
\end_inset
\begin_inset Formula
\begin{equation}
F_{i}=\sqrt{g}\varepsilon_{ijk}J^{j}B^{k}=\sqrt{g}^{-1}\varepsilon_{ijk}\de J^{j}\de B^{k}
\end{equation}
\end_inset
take
\begin_inset Formula
\begin{equation}
\mathcal{F}_{i}=\sqrt{g}F_{i}=\sqrt{g}\partial_{i}p
\end{equation}
\end_inset
Take
\begin_inset Formula
\begin{equation}
p^{\prime}(r)=\mathcal{B}^{\ph}(r)(J^{\tht}(\v x)-\iota J^{\ph}(\v x)).
\end{equation}
\end_inset
Thus
\begin_inset Formula
\begin{equation}
J^{\tht}(\v x)-\iota J^{\ph}(\v x)=f(r)
\end{equation}
\end_inset
must be a flux function.
\end_layout
\begin_layout Section*
Equilibrium
\end_layout
\begin_layout Standard
Unperturbed equilibrium is
\begin_inset Formula
\begin{align}
\nabla p_{0} & =\v J_{0}\times\v B_{0},\\
\nabla\times\v B_{0} & =\mu_{0}\v J_{0}.
\end{align}
\end_inset
without dependencies on
\begin_inset Formula $\ph$
\end_inset
.
Thus
\begin_inset Formula
\[
\v J_{0}=
\]
\end_inset
\begin_inset Formula
\begin{equation}
\nabla p_{0}=\v J_{0}\times\v B_{0}
\end{equation}
\end_inset
\end_layout
\begin_layout Section*
Linear perturbation
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
\nabla p_{1}=\v J_{1}\times\v B_{0}+\v J_{0}\times\v B_{1}
\]
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
p_{mn}^{\prime}\nabla r+imp_{mn}\nabla\tht+inp_{mn}\nabla\ph=\v J_{mn}\times\v B_{0}+\v J_{0}\times\v B_{mn}
\]
\end_inset
Take scalar product with
\begin_inset Formula $\sqrt{g}\v B_{0}$
\end_inset
to obtain pressure perturbation
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
imp_{mn}\de B^{\tht}+inp_{mn}\de B^{\ph}=\sqrt{g}\v J_{0}\times\v B_{mn}
\]
\end_inset
or
\begin_inset Formula
\[
ip_{mn}\de B^{\ph}(m\iota+n)=\sqrt{g}\v J_{0}\times\v B_{mn}
\]
\end_inset
\end_layout
\begin_layout Section*
Cylinder geometry
\end_layout
\begin_layout Standard
Simple model for equilibrium field in the periodic cylinder limit of a torus
with
\begin_inset Formula $y=\ph$
\end_inset
.
Coordinates
\begin_inset Formula $\v x=(r,\tht,\ph)$
\end_inset
with
\begin_inset Formula
\begin{align*}
x(\v x) & =r\cos\tht\\
y(\v x) & =-\ph\\
z(\v x) & =r\sin\tht
\end{align*}
\end_inset
and metric tensor
\begin_inset Formula
\begin{equation}
g_{ij}=\left(\begin{array}{ccc}
1\\
& r^{2}\\
& & 1
\end{array}\right).
\end{equation}
\end_inset
\end_layout
\end_body
\end_document