-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathuq.lyx
344 lines (269 loc) · 6.5 KB
/
uq.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
#LyX 2.3 created this file. For more info see http://www.lyx.org/
\lyxformat 544
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass article
\use_default_options true
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_minted 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Standard
\begin_inset FormulaMacro
\newcommand{\tht}{\vartheta}
\end_inset
\begin_inset FormulaMacro
\newcommand{\ph}{\varphi}
\end_inset
\begin_inset FormulaMacro
\newcommand{\balpha}{\boldsymbol{\alpha}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\btheta}{\boldsymbol{\theta}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bJ}{\boldsymbol{J}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bGamma}{\boldsymbol{\Gamma}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bOmega}{\boldsymbol{\Omega}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\d}{\text{d}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\t}[1]{\text{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\m}{\text{m}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\v}[1]{\boldsymbol{#1}}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset FormulaMacro
\renewcommand{\t}[1]{\mathbf{#1}}
\end_inset
\end_layout
\begin_layout Section
Classical propagation of uncertainties
\end_layout
\begin_layout Standard
In classical methods of uncertainty propagation, input quantities
\begin_inset Formula $x\pm\Delta x$
\end_inset
are taken from their best estimate
\begin_inset Formula $x$
\end_inset
together with a possible deviation
\begin_inset Formula $\Delta x$
\end_inset
, usually drawn as error bars.
In a single experiment,
\begin_inset Formula $x$
\end_inset
is the reading of the measured quantity and
\begin_inset Formula $\Delta x$
\end_inset
is set according to the accuracy of the measurement device, e.g.
the last significant digit on a display if no other factors are known to
introduce uncertainties.
In a series of experiments,
\begin_inset Formula $x$
\end_inset
is usually set to the sample mean and
\begin_inset Formula $\Delta x$
\end_inset
to the sample standard deviation (or some multiple of it).
To know how the uncertainty in
\begin_inset Formula $x\pm\Delta x$
\end_inset
propagates to a function
\begin_inset Formula $y(x\pm\Delta x)$
\end_inset
there are two straightforward ways.
\end_layout
\begin_layout Enumerate
Linear approximation
\begin_inset Newline newline
\end_inset
For sufficiently small
\begin_inset Formula $\Delta x$
\end_inset
and if the analytic form of
\begin_inset Formula $y(x)$
\end_inset
is known we can use a Taylor expansion
\begin_inset Formula
\begin{equation}
y(x\pm\Delta x)\approx y(x)\pm y^{\prime}(x)\Delta x+\mathcal{O}(\,(\Delta x)^{2}\,).
\end{equation}
\end_inset
Thus we estimate
\begin_inset Formula $y$
\end_inset
and its uncertainty
\begin_inset Formula $\Delta y$
\end_inset
as
\begin_inset Formula
\begin{align}
y & =y(x),\quad\Delta y=y^{\prime}(x)\Delta x.
\end{align}
\end_inset
Within this linear approximation the estimated
\begin_inset Formula $y$
\end_inset
stays centered within the error bars.
\end_layout
\begin_layout Enumerate
Direct evaluation
\begin_inset Newline newline
\end_inset
In the more general case one evaluates
\begin_inset Formula $y(x)$
\end_inset
,
\begin_inset Formula $y(x+\Delta x)$
\end_inset
and
\begin_inset Formula $y(x-\Delta x)$
\end_inset
directly.
This works also if no analytical expression for
\begin_inset Formula $y(x)$
\end_inset
exists, e.g.
if it follows from a complicated numerical model.
Here
\begin_inset Formula $y(x)$
\end_inset
does not necessarily lie centered between upper and lower error bar and
we obtain two uncertainties
\begin_inset Formula
\begin{align}
\Delta y^{+} & =y(x+\Delta x)-y(x),\\
\Delta y^{-} & =y(x)-y(x-\Delta x).
\end{align}
\end_inset
According to Taylor's theorem for differentiable functions
\begin_inset Formula $y(x)$
\end_inset
the difference
\begin_inset Formula $\Delta y^{+}-\Delta y^{-}\approx y^{\prime\prime}(x)(\Delta x)^{2}$
\end_inset
becomes ignorable for sufficiently small
\begin_inset Formula $\Delta x$
\end_inset
, leading to results close to the linear approximation described above.
\end_layout
\begin_layout Section
Polynomial chaos expansion
\end_layout
\begin_layout Standard
In a more general sense we can model out input quantity as a random variable
\begin_inset Formula $X$
\end_inset
according to some probability density function
\begin_inset Formula $f_{X}(x)$
\end_inset
.
In the pseudo-spectral approach we model
\begin_inset Formula
\begin{equation}
f_{Y}(y)\approx\sum_{n}f_{n}\phi_{n}(x)
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
Here
\begin_inset Formula $\phi_{n}$
\end_inset
are chosen as orthogonal polynomials (Hermite, Legendre, Jacobi, Laguerre).
Their
\series bold
weight function
\series default
under which orthogonality holds corresponds to the
\series bold
probability density function
\series default
\begin_inset Formula $f_{X}(x)$
\end_inset
of the input variables.
Coefficients
\begin_inset Formula $f_{n}$
\end_inset
are computed according to the optimum quadrature rule for the respective
problem.
\end_layout
\end_body
\end_document