-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwriteup_diffgeom.lyx
4167 lines (3153 loc) · 83.5 KB
/
writeup_diffgeom.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#LyX 2.3 created this file. For more info see http://www.lyx.org/
\lyxformat 544
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass elsarticle
\use_default_options true
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman "tgpagella" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry true
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine natbib
\cite_engine_type authoryear
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_minted 0
\index Index
\shortcut idx
\color #008000
\end_index
\leftmargin 3cm
\topmargin 3cm
\rightmargin 3cm
\bottommargin 3cm
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Standard
\begin_inset FormulaMacro
\newcommand{\tht}{\vartheta}
\end_inset
\begin_inset FormulaMacro
\newcommand{\ph}{\varphi}
\end_inset
\begin_inset FormulaMacro
\newcommand{\balpha}{\boldsymbol{\alpha}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\btheta}{\boldsymbol{\theta}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bJ}{\boldsymbol{J}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bGamma}{\boldsymbol{\Gamma}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bOmega}{\boldsymbol{\Omega}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\d}{\text{d}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\t}[1]{\text{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\m}{\text{m}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\v}[1]{\boldsymbol{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\u}[1]{\underline{#1}}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset FormulaMacro
\renewcommand{\t}[1]{\mathbf{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bA}{\boldsymbol{A}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bB}{\boldsymbol{B}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\c}{\mathrm{c}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\difp}[2]{\frac{\partial#1}{\partial#2}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\xset}{{\bf x}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\zset}{{\bf z}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\qset}{{\bf q}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\pset}{{\bf p}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\wset}{{\bf w}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\rset}{{\bf r}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\yset}{\mathbf{y}}
\end_inset
\end_layout
\begin_layout Title
A short introduction to differential geometry
\begin_inset Newline newline
\end_inset
from the perspective of tensor calculus
\end_layout
\begin_layout Author
Christopher Albert
\end_layout
\begin_layout Address
Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, 85748 Garching,
Germany
\begin_inset Newline newline
\end_inset
\end_layout
\begin_layout Abstract
In this text a short explanation on the treatment of space as a smooth manifold
and phase-space as a symplectic manifold for readers acquainted to terminology
from tensor calculus in co-/contravariant notation is given.
The main aim of this text is to provide a fast track to working knowledge
of the discussed concepts.
For more details, the three textbooks of Arnold, Jose/Saletan and Marsden
should be helpful for further clarifications and deeper understanding.
For a thorough introduction into smooth manifolds, the video lectures of
Frederic Schuller from the WE-Heraeus International Winter School on Gravity
and Light are highly recommended.
A review concerned with guiding-center dynamics and in more traditional
notation is given by Cary/Brizard at
\begin_inset CommandInset href
LatexCommand href
target "https://journals.aps.org/rmp/pdf/10.1103/RevModPhys.81.693"
\end_inset
.
A main feature distinguishing differential geometry from tensor calculus
is the treatment of covectors as first-class objects in addition to vectors.
As a concequence in many derivations no metric tensor has to be specified,
and the construction of structure-preserving numerical methods becomes
simpler and more transparent.
Apart from conceptual differences, the practical use of the formalisms
is similar, in particular the notation with upper and lower indexes for
contravariant and covariant components and the convention to sum over indexes
appearing once up and once down.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
date{
\backslash
today}
\end_layout
\begin_layout Plain Layout
\backslash
maketitle
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
\backslash
makeatletter
\end_layout
\begin_layout Plain Layout
\backslash
def
\backslash
ps@pprintTitle{
\end_layout
\begin_layout Plain Layout
\backslash
let
\backslash
@oddhead
\backslash
@empty
\end_layout
\begin_layout Plain Layout
\backslash
let
\backslash
@evenhead
\backslash
@empty
\backslash
def
\backslash
@oddfoot{
\backslash
footnotesize
\backslash
itshape
\backslash
hfill
\backslash
today}
\backslash
def
\backslash
@evenfoot{
\backslash
thepage
\backslash
hfill}
\end_layout
\begin_layout Plain Layout
}
\end_layout
\begin_layout Plain Layout
\backslash
makeatother
\end_layout
\end_inset
\end_layout
\begin_layout Section
Notation
\end_layout
\begin_layout Standard
Here we fix some notational conventions for the following text.
Scalars and scalar functions are denoted in lowercase italic letters
\begin_inset Formula $a,f$
\end_inset
and for points
\begin_inset Formula $X,Q,Z$
\end_inset
we use uppercase italic letters.
We use italic bold letters to denote ensor fields, in particular vectors
\begin_inset Formula $\dot{\v q},\dot{\v z}$
\end_inset
and covectors
\begin_inset Formula $\v p,\v A$
\end_inset
.
Coordinate tuples are denoted by bold upright letters
\begin_inset Formula $\xset,\zset,\qset,\pset$
\end_inset
.
Spatial coordinates
\begin_inset Formula $\xset$
\end_inset
have components
\begin_inset Formula $x^{k}$
\end_inset
, canonical coordinates
\begin_inset Formula $\qset,\pset$
\end_inset
consist of tuples
\begin_inset Formula $q^{i},p_{j}$
\end_inset
, and generally non-canonical coordinates in phase-space
\begin_inset Formula $\zset$
\end_inset
have entries
\begin_inset Formula $z^{\alpha}$
\end_inset
.
Lower index notation for canonical momenta
\begin_inset Formula $p_{j}$
\end_inset
is used since in the classical construction
\begin_inset Formula $p_{j}$
\end_inset
are not only coordinates in phase-space but also components of covectors
with respect to configuration space charted by coordinates
\begin_inset Formula $q^{i}$
\end_inset
.
Latin indices
\begin_inset Formula $i,j,k,l$
\end_inset
run from
\begin_inset Formula $1$
\end_inset
to
\begin_inset Formula $3$
\end_inset
for spatial coordinates
\begin_inset Formula $x^{k}$
\end_inset
, or from
\begin_inset Formula $1$
\end_inset
to
\begin_inset Formula $N$
\end_inset
for canonical coordinates in a system with
\begin_inset Formula $N$
\end_inset
degrees of freedom.
Greek indices like
\begin_inset Formula $\alpha,\beta$
\end_inset
are used for general phase-space coordinates
\begin_inset Formula $z^{\alpha}$
\end_inset
and run from
\begin_inset Formula $1$
\end_inset
to
\begin_inset Formula $2N$
\end_inset
.
We use the usual convention from tensor algebra to sum over indices appearing
once up and once down in formulas, i.e.
\begin_inset Formula $p_{i}\dot{q}^{i}\equiv\sum_{i}p_{i}\dot{q}^{i}$
\end_inset
, where indexes in the denominator of derivatives switch their position,
e.g.
\begin_inset Formula $\partial H/\partial q^{j}=p_{j}$
\end_inset
has a lower index.
A common convention of physics literature is used where functional dependencies
such as
\begin_inset Formula $\zset(\qset,\pset),\zset(t)$
\end_inset
are denoted by the same letters as
\begin_inset Formula $\zset$
\end_inset
alone.
If arguments are not written explicitly inside functions the meaning should
become clear from the respective context.
\end_layout
\begin_layout Section
Basics
\end_layout
\begin_layout Standard
Physics can be treated on different levels of abstraction.
Here we will start from the simplest picture and progress to the most advanced
one, expressing our dissatisfaction with the result in each step, to justify
an increase in the level of abstraction.
The names of the sub-sections are chosen from the author's experience and
can of course vary from school to school.
The last subsection on the mathematical theory of differential geometry
is at the highest level of abstraction and clarity and contains all other
section as special cases and/or more sloppy interpretations.
This does not necesserily mean that one should start on the top.
In the view of the author it is rather convenient to start from the most
basic levels and see where conceptual problems arise.
Once the highest level is reached, one can take a step back to the sometimes
more practical levels, with the power of understanding what objects we
are actually talking about, and how they are interrelated.
\end_layout
\begin_layout Subsection
High-school physics
\end_layout
\begin_layout Standard
The usual picture of high-school mathematics and physics is the following:
The world of classical physics can be described by points
\begin_inset Formula $X$
\end_inset
given in Cartesian coordinates
\begin_inset Formula $\xset=(x,y,z)$
\end_inset
, and time
\begin_inset Formula $t$
\end_inset
that is running steadily.
A vector is constructed as an arrow pointing from
\begin_inset Formula $X_{1}$
\end_inset
to
\begin_inset Formula $X_{2}$
\end_inset
with
\begin_inset Formula
\begin{equation}
\v u_{12}=\left(\begin{array}{c}
u_{12\,x}\\
u_{12\,y}\\
u_{12\,z}
\end{array}\right)\equiv\left(\begin{array}{c}
x_{2}-x_{1}\\
y_{2}-y_{1}\\
z_{2}-z_{1}
\end{array}\right).
\end{equation}
\end_inset
It is said to exists independently from its spreading point
\begin_inset Formula $P$
\end_inset
and can be parallely translated in space.
The length of a vector can be computed by its norm
\begin_inset Formula
\begin{equation}
|\v u|=\sqrt{u_{x}^{\,2}+u_{y}^{\,2}+u_{z}^{\,2}}.
\end{equation}
\end_inset
To each point
\begin_inset Formula $P$
\end_inset
we can assign a vector from the origin point
\begin_inset Quotes eld
\end_inset
\begin_inset Formula $0$
\end_inset
\begin_inset Quotes erd
\end_inset
,
\begin_inset Formula
\begin{equation}
\v r(P)\equiv\v u^{0P}=\left(\begin{array}{c}
x\\
y\\
z
\end{array}\right),
\end{equation}
\end_inset
whose components are the same as the coordinates of
\begin_inset Formula $P$
\end_inset
.
The inner product between vectors
\begin_inset Formula $\v u$
\end_inset
and
\begin_inset Formula $\v v$
\end_inset
is given by
\begin_inset Formula
\begin{equation}
\v u\cdot\v v=u_{x}v_{x}+u_{y}v_{y}+u_{z}v_{z}.
\end{equation}
\end_inset
By geometrical means we see that can be related to the angle
\begin_inset Formula $\theta^{\v{uv}}$
\end_inset
between the vectors via
\begin_inset Formula
\begin{equation}
\v u\cdot\v v=|\v u||\v v|\cos\theta^{\v u\v v}.
\end{equation}
\end_inset
We also notice that the norm is related to the inner product via
\begin_inset Formula $|\v u|=\sqrt{\v u\cdot\v u}$
\end_inset
.
In addition we introduce the cross product
\begin_inset Formula
\begin{equation}
\v u\times\v v\equiv\left(\begin{array}{c}
u_{y}u_{z}-u_{z}u_{y}\\
u_{z}u_{x}-u_{x}u_{z}\\
u_{x}u_{y}-u_{y}u_{x}
\end{array}\right),
\end{equation}
\end_inset
yielding a vector as a result.
\end_layout
\begin_layout Subsubsection*
Mechanics
\end_layout
\begin_layout Standard
A particle that starts at time
\begin_inset Formula $t=0$
\end_inset
at point
\begin_inset Formula $X$
\end_inset
with a constant velocity vector
\begin_inset Formula $\v v$
\end_inset
will have a time-dependent position vector
\begin_inset Formula
\begin{equation}
\v r(t)=\v r(0)+\v vt
\end{equation}
\end_inset
that we can then translate back to a point
\begin_inset Formula $X(t)$
\end_inset
.
If a constant vectorial force
\begin_inset Formula $\v F$
\end_inset
acts on a particle of mass
\begin_inset Formula $m$
\end_inset
we obtain an accelaration vector
\begin_inset Formula
\begin{equation}
\v a\equiv\frac{\d\v v(t)}{\d t}=\frac{\v F}{m}
\end{equation}
\end_inset
according to Newton's law.
We then first compute the time-dependent velocity vector by integrating
once,
\begin_inset Formula
\begin{equation}
\v v(t)=\v v(0)+\frac{\v F}{m},
\end{equation}
\end_inset
and integrate another time to obtain
\begin_inset Formula
\begin{equation}
\v r(t)=\v r(0)+\v v(0)t+\frac{\v F}{2m}t^{2}.
\end{equation}
\end_inset
\end_layout
\begin_layout Subsubsection*
Field theory
\end_layout
\begin_layout Standard
A vector fields
\begin_inset Formula $\v E(X)$
\end_inset
means to attach a vector to each point
\begin_inset Formula $X$
\end_inset
in space, i.e.
\begin_inset Formula $\v E$
\end_inset
is like a function on components
\begin_inset Formula $\xset=(x,y,z)$
\end_inset
that has vectors as an output.
In that sense we can view
\begin_inset Formula $\v r(X)$
\end_inset
as a vector field that yields Cartesian components of
\begin_inset Formula $X$
\end_inset
in each point.
For electromagnetism and gravity, the intuitive picture of a
\emph on
flow
\emph default
of a vector field through a surface is introduced.
There we take the normal components of a vector field to the surface, and
sum them up.
Gauss' law can be derived by looking at the vectors in the direction of
a point charge and how they flow through a spherical surface.
\end_layout
\begin_layout Subsubsection*
Why we are dissatisfied
\end_layout
\begin_layout Standard
First of all, we could only use Cartesian coordinates.
We practically identified points, vectors, and their Cartesian components,
despite noticing that the inner product would work the same, if we translated
or rotated our coordinate frame.
In mechanics and field theory we were limited to constant forces and simple
fields.
For treating cylindrical and spherical symmetry we had to rely on ad-hoc
solutions by drawing arrows, since using Cartesian coordinates there is
very cumbersome.
The questions what space and time actually are, and why we can describe
them by numbers in the given way, remains completely open.
\end_layout
\begin_layout Subsection
Undergraduate physics
\end_layout
\begin_layout Standard
In the undergraduate physics courses we keep the picture of vector calculus
and classical physics from high-school, but more advanced concepts are
introduced on several levels.
A vector is generalized from a geometric quantity to an abstract object
in a linear vector space that allows for addition and multiplication by
scalars.
Newton's equations of motion are generalized to Lagrange's and Hamilton's
equations in generalized coordinates, and solved for space- and time-dependent
forces.
In field theory we solve partial differential equations in possibly curvilinear
coordinates.
Such a coordinate change is given by a set of transformation equations
\begin_inset Formula
\begin{align}
x & =x(\xset)\equiv x(x^{1},x^{2},x^{3}),\\
y & =y(\xset)\equiv y(x^{1},x^{2},x^{3}),\\
z & =z(\xset)\equiv z(x^{1},x^{2},x^{3}),
\end{align}
\end_inset
or more compactly
\begin_inset Formula $\v r=\v r(\xset)$
\end_inset
, with the position vector
\begin_inset Formula $\v r$
\end_inset
still identified with its Cartesian coordinates
\begin_inset Formula $(x,y,z)$
\end_inset
via
\begin_inset Formula
\begin{align}
\v r & \equiv x\hat{\v e}_{x}+y\hat{\v e}_{y}+z\hat{\v e}_{z}
\end{align}
\end_inset
even though we already anticipate that the concept of a position
\begin_inset Quotes eld
\end_inset
vector
\begin_inset Quotes erd
\end_inset
becomes problematic due to the possibility of coordinate changes.
If we want to be more precise and distinguish
\begin_inset Formula $X$
\end_inset
from
\begin_inset Formula $\v r$
\end_inset
, we look at the position vector field
\begin_inset Formula $\v r(X)$
\end_inset
and represent
\begin_inset Formula $X(\xset)$
\end_inset
via coordinates
\begin_inset Formula $\xset$
\end_inset
, so when we write
\begin_inset Formula $\v r$
\end_inset
, we actually mean the vector-valued function
\begin_inset Formula $\v r(\xset)\equiv\v r(X(\xset))$
\end_inset
representing the vector field
\begin_inset Formula $\v r(X)$
\end_inset
in coordinates
\begin_inset Formula $\xset$
\end_inset
.
Unit vectors in curvilinear coordinates are given as derivatives of this
function via
\begin_inset Formula
\begin{equation}
\hat{\v e}_{k}=\frac{1}{|\partial\v r/\partial x^{k}|}\frac{\partial\v r}{\partial x^{k}},
\end{equation}
\end_inset
where we require an orthonormal set, i.e.
\begin_inset Formula $\hat{\v e}_{k}\cdot\hat{\v e}_{l}=\delta_{kl}$
\end_inset
, so
\begin_inset Formula $0$
\end_inset
if
\begin_inset Formula $k\neq l$
\end_inset
and
\begin_inset Formula $1$
\end_inset
if
\begin_inset Formula $k=l$
\end_inset
.
This is the case for many sets of coordinates, including cylindrical and
spherical coordinates, that make our life much easier in electromagnetic
field theory.
To manipulate vector fields we introduce the nabla symbol
\begin_inset Formula $\nabla$
\end_inset
as a vector differential operator, producing gradient, curl, and divergence
via
\begin_inset Formula
\begin{align}
\nabla\Phi & \equiv\frac{\partial\Phi}{\partial x}\v e_{x}+\frac{\partial\Phi}{\partial y}\v e_{y}+\frac{\partial\Phi}{\partial z}\v e_{z},\\
\nabla\times\v A & \equiv\left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right)\v e_{x}+\left(\frac{\partial A_{x}}{\partial z}-\frac{\partial A_{z}}{\partial x}\right)\v e_{y}+\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{y}}{\partial x}\right)\v e_{z},\\
\nabla\cdot\v B & \equiv\frac{\partial B_{x}}{\partial x}+\frac{\partial B_{y}}{\partial y}+\frac{\partial B_{z}}{\partial z}.
\end{align}
\end_inset
We proof differential theorems of vector calculus, namely
\begin_inset Formula
\begin{equation}
\nabla\times(\nabla\Phi)=0,\quad\nabla\cdot(\nabla\times\v A)=0,
\end{equation}
\end_inset
that aid us in the construction of potential fields in electrodynamics.
Related integral theorems of Gauss and Stokes are
\begin_inset Formula
\begin{equation}
\int_{\Omega_{3}}\nabla\cdot\v D\,\d V=\int_{\partial\Omega_{3}}\v D\cdot\d\v S,\quad\int_{\Omega_{2}}(\nabla\times\v D)\cdot\d\v S=\int_{\partial\Omega_{2}}\v D\cdot\d\v l,
\end{equation}
\end_inset
where
\begin_inset Formula $\Omega_{3}$
\end_inset
and
\begin_inset Formula $\Omega_{2}$
\end_inset
are 3- and 2-dimensional domains, and
\begin_inset Formula $\Omega_{3},\Omega_{2}$
\end_inset
their respective boundaries with surface normal
\begin_inset Formula $\d\v S$
\end_inset
and line element
\begin_inset Formula $\d\v l$
\end_inset
being infinitesimal vectors.
\end_layout
\begin_layout Subsubsection*
Why we are dissatisfied
\end_layout
\begin_layout Standard
Transforming differential operators to curvilinear coordinates is complicated
and we are limited to normalized basis vectors in orthogonal coordinate
systems.
\end_layout
\begin_layout Subsection
Graduate level physics
\end_layout
\begin_layout Standard
Still the focus of tensor calculus in curvilinear geometry is on the components
of a tensor in a certain basis.
This is reflected in the statement that a tensor is a
\begin_inset Quotes eld
\end_inset
matrix with transformation properties under coordinate changes
\begin_inset Quotes erd
\end_inset
.
\end_layout
\begin_layout Subsubsection*
Why we are dissatisfied