-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwriteup_ntv.lyx
609 lines (467 loc) · 12.1 KB
/
writeup_ntv.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
#LyX 2.3 created this file. For more info see http://www.lyx.org/
\lyxformat 544
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass revtex4-1
\begin_preamble
\usepackage{tikz}
\end_preamble
\options notitlepage
\use_default_options true
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman "tgpagella" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine natbib
\cite_engine_type numerical
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_minted 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Standard
\begin_inset FormulaMacro
\newcommand{\tht}{\vartheta}
\end_inset
\begin_inset FormulaMacro
\newcommand{\ph}{\varphi}
\end_inset
\begin_inset FormulaMacro
\newcommand{\balpha}{\boldsymbol{\alpha}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\btheta}{\boldsymbol{\theta}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bJ}{\boldsymbol{J}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bGamma}{\boldsymbol{\Gamma}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bOmega}{\boldsymbol{\Omega}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\d}{\text{d}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\t}[1]{\text{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\m}{\text{m}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\v}[1]{\boldsymbol{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\u}[1]{\underline{#1}}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset FormulaMacro
\renewcommand{\t}[1]{\mathbf{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bA}{\boldsymbol{A}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bB}{\boldsymbol{B}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\c}{\mathrm{c}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\difp}[2]{\frac{\partial#1}{\partial#2}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\xset}{{\bf x}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\zset}{{\bf z}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\qset}{{\bf q}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\pset}{{\bf p}}
\end_inset
\end_layout
\begin_layout Title
Neoclassical Toroidal Viscous Torque
\end_layout
\begin_layout Author
Christopher Albert
\end_layout
\begin_layout Date
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
today
\end_layout
\end_inset
\end_layout
\begin_layout Standard
Neoclassical toroidal viscous torque, often called neoclassical toroidal
viscosity or NTV, is a result from non-axisymmetric perturbations in an
originally axisymmetric plasma equilibrium of a tokamak.
The underlying theory of neoclassical transport relies on distorted but
still nested flux surfaces, i.e.
\emph on
non-resonant
\emph default
magnetic perturbations.
In case of
\emph on
resonant
\emph default
magnetic perturbations (RMPs) one must exclude resonant surfaces from the
analysis that yield a different mechanism of
\emph on
resonant torque
\emph default
.
At sufficient distance from the resonant regions NTV theory is then applicable,
and the overall torque is the sum of non-resonant NTV torque and resonant
torque, respectively dominant in different radial regions of the plasma.
Apart from additional resonant torque contributions an important point
affecting the expected accuracy of NTV results is the reliance on a on
a given perturbed plasma equilibrium for neoclassical computations.
Finally, both, resonant and NTV torque affect this equilibrium, so it must
be found in a self-consistent way.
Such an effort including only NTV has been undertaken in
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand citep
key "Park2017"
literal "false"
\end_inset
.
A full treatment must however also include resonant torque, requiring a
full Monte-Carlo kinetic computation coupled to Maxwell's equations necessary
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand citep
key "Albert2016"
literal "false"
\end_inset
.
Analysis of NTV is still useful, as it allows to study and quantify the
influence of the non-resonant part of the perturbation on its own and is
much less computationally intensive than the full kinetic treatment of
perturbed equilibria.
\end_layout
\begin_layout Standard
Generally we speak of toroidal torque as the driving term affecting
\emph on
kinematic
\emph default
toroidal angular momentum, as opposed to the total toroidal momentum including
electromagnetic effects that is always conserved.
Apart from a possible kinematic momentum source term from neutral beam
injection, internal torque affecting toroidal plasma rotation is always
electromagnetic, i.e.
linked to the Lorentz
\begin_inset Formula $\v J\times\v B$
\end_inset
force.
Within ideal MHD equilibria, currents
\begin_inset Formula $\v J$
\end_inset
and magnetic field
\begin_inset Formula $\v B$
\end_inset
are parallel to flux surfaces and do not produce any forces, since radial
Lorentz forces balanced by
\begin_inset Formula $\nabla p$
\end_inset
via
\begin_inset Formula
\begin{equation}
\nabla p=\v J\times\v B.
\end{equation}
\end_inset
The MHD force balance is also valid in non-axisymmetric fields, where ideal
treatment is only possible away from resonant regions where surfaces of
\begin_inset Formula $p=p_{0}+\delta p=\mathrm{const.}$
\end_inset
coincide with perturbed flux surfaces
\begin_inset Formula $r=r_{0}+\delta r=\mathrm{const}$
\end_inset
.
When taking neoclassical transport into account one can show that it is
radially
\emph on
ambipolar
\emph default
in axisymmetric devices to leading order, i.e.
there is no net radial charge transport by different species.
This changes in a perturbed configuration, where the transport across the
perturbed flux surfaces (see Fig.
\begin_inset space ~
\end_inset
\begin_inset CommandInset ref
LatexCommand ref
reference "fig:Perturbed-and-unperturbed"
\end_inset
) becomes
\emph on
non-ambipolar
\emph default
and generates a net radial current.
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status open
\begin_layout Plain Layout
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
input{pertunpert.tpx}
\end_layout
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset Caption Standard
\begin_layout Plain Layout
Perturbed and unperturbed flux surfaces.
The projection of perturbed currents
\begin_inset Formula $J^{r_{0}}=\v J\cdot\nabla r_{0}$
\end_inset
to the original radial direction
\begin_inset Formula $\nabla r_{0}$
\end_inset
is of the order one and periodic in flux surface angles.
For NTV we are rather interested in the small
\begin_inset Formula $\delta J^{r}=\v J\cdot\nabla r$
\end_inset
produced by non-ambipolar transport across perturbed flux surfaces
\begin_inset Formula $r=\mathrm{const.}$
\end_inset
\begin_inset CommandInset label
LatexCommand label
name "fig:Perturbed-and-unperturbed"
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Plain Layout
\end_layout
\end_inset
\end_layout
\begin_layout Standard
The resulting toroidal torque density is defined as the covariant component
with respect to the toroidal angle
\begin_inset Formula $\ph$
\end_inset
parametrizing the
\emph on
perturbed
\emph default
flux surfaces,
\begin_inset Formula
\begin{equation}
\pi_{\ph}=(\v J\times\v B)_{\ph}=\frac{1}{\sqrt{g}}\varepsilon\delta J^{r}B^{\tht}.\label{eq:lag}
\end{equation}
\end_inset
Here we have marked
\begin_inset Formula $\delta J^{r}=\v J\cdot\nabla r$
\end_inset
as a small quantity resulting from
\begin_inset Formula $\v J=\v J_{0}+\delta\v J$
\end_inset
.
This is not to be confused with the torque with respect to
\emph on
unperturbed
\emph default
flux surfaces having different coordinates
\begin_inset Formula $(r_{0},\tht_{0},\ph_{0})$
\end_inset
,
\begin_inset Formula
\begin{equation}
\pi_{\ph_{0}}=(\v J\times\v B)_{\ph_{0}}=\frac{1}{\sqrt{g}}(\delta J^{r_{0}}B^{\tht_{0}}-J^{\tht_{0}}\delta B^{r_{0}}).\label{eq:eul}
\end{equation}
\end_inset
Here also the radial component
\begin_inset Formula $\delta B^{r_{0}}=\v B\cdot\nabla r_{0}$
\end_inset
from
\begin_inset Formula $\v B=\v B_{0}+\delta\v B$
\end_inset
enters, where
\begin_inset Formula $\v B_{0}\cdot\nabla r_{0}=0$
\end_inset
on unperturbed flux surfaces.
The contribution
\begin_inset Formula
\begin{equation}
J^{r_{0}}=\v J\cdot\nabla r_{0}=\v J\cdot\nabla(r-\delta r)=\delta J^{r}-\v J\cdot\nabla\delta r.
\end{equation}
\end_inset
now contains not only small currents from
\begin_inset Formula $\delta J^{r}$
\end_inset
non-ambipolar transport , but also currents parallel to perturbed flux
surfaces, containing angular components of the overall (order of
\begin_inset Formula $\v J_{0}$
\end_inset
) current
\begin_inset Formula $\v J$
\end_inset
that is not parallel to surfaces
\begin_inset Formula $r_{0}=\mathrm{const.}$
\end_inset
but rather to
\begin_inset Formula $r=\mathrm{const.}$
\end_inset
due to the distortion.
Since the perturbation is periodic in angles, those additional periodic
contribution cancel out when computing the flux-surface averaged radial
torque density, and the two results become equivalant to leading order
in the perturbation.
In case of destroyed flux surfaces it is no longer possible to use Eq.
\begin_inset space ~
\end_inset
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:lag"
\end_inset
and one can only compute overall (including resonant) torque within Eq.
\begin_inset space ~
\end_inset
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:eul"
\end_inset
and flux-surface averaging.
In contrast, NTV torque corresponds to the toroidal component of the torque
generate by radial currents of non-ambipolar neoclassical transport with
respect to perturbed flux surfaces and can be most compactly formulated
in the Lagrangian picture working
\emph on
on
\emph default
those surfaces in Eq.
\begin_inset space ~
\end_inset
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:lag"
\end_inset
.
Later we can make use of the assumption that the separation of perturbed
from unperturbed flux surfaces is infintesimal, and use flux coordinates
and orbits with regard to the unperturbed surfaces while evaluating toroidal
torque on perturbed surfaces.
\end_layout
\begin_layout Bibliography
\begin_inset CommandInset bibitem
LatexCommand bibitem
key "Park2017"
literal "false"
\end_inset
J.-K.
Park and N.
C.
Logan, “Self-consistent perturbed equilibrium with neoclassical toroidal
torque in tokamaks,” Phys.
Plasmas, vol.
24, no.
3, p.
032505, Mar.
2017.
\end_layout
\begin_layout Bibliography
\begin_inset CommandInset bibitem
LatexCommand bibitem
key "Albert2016"
literal "false"
\end_inset
C.
G.
Albert, M.
F.
Heyn, S.
V Kasilov, W.
Kernbichler, A.
F.
Martitsch, and A.
M.
Runov, “Kinetic modeling of 3D equilibria in a tokamak,” J.
Phys.
Conf.
Ser., vol.
775, no.
1, p.
012001, Nov.
2016.
\end_layout
\end_body
\end_document