forked from openvinotoolkit/openvino_notebooks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtokens_bert.py
71 lines (60 loc) · 2.18 KB
/
tokens_bert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# code from https://github.com/openvinotoolkit/open_model_zoo/blob/master/demos/common/python/openvino/model_zoo/model_api/models/tokens_bert.py
import string
import unicodedata
# load vocabulary file for encoding
def load_vocab_file(vocab_file_name):
with open(vocab_file_name, "r", encoding="utf-8") as r:
return {t.rstrip("\n"): i for i, t in enumerate(r.readlines())}
# split word by vocab items and get tok codes
# iteratively return codes
def encode_by_voc(w, vocab):
# remove mark and control chars
def clean_word(w):
wo = "" # accumulator for output word
for c in unicodedata.normalize("NFD", w):
c_cat = unicodedata.category(c)
# remove mark nonspacing code and controls
if c_cat != "Mn" and c_cat[0] != "C":
wo += c
return wo
w = clean_word(w)
res = []
for s0, e0 in split_to_words(w):
s, e = s0, e0
tokens = []
while e > s:
subword = w[s:e] if s == s0 else "##" + w[s:e]
if subword in vocab:
tokens.append(vocab[subword])
s, e = e, e0
else:
e -= 1
if s < e0:
tokens = [vocab['[UNK]']]
res.extend(tokens)
return res
# split big text into words by spaces
# iteratively return words
def split_to_words(text):
prev_is_sep = True # mark initial prev as space to start word from 0 char
for i, c in enumerate(text + " "):
is_punc = (c in string.punctuation or unicodedata.category(c)[0] == "P")
cur_is_sep = (c.isspace() or is_punc)
if prev_is_sep != cur_is_sep:
if prev_is_sep:
start = i
else:
yield start, i
del start
if is_punc:
yield i, i + 1
prev_is_sep = cur_is_sep
# get big text and return list of token id and start-end positions for each id in original texts
def text_to_tokens(text, vocab):
tokens_id = []
tokens_se = []
for s, e in split_to_words(text):
for tok in encode_by_voc(text[s:e], vocab):
tokens_id.append(tok)
tokens_se.append((s, e))
return tokens_id, tokens_se