forked from ZipCPU/zipcpu
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathzipmmu.v
580 lines (555 loc) · 20.3 KB
/
zipmmu.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
////////////////////////////////////////////////////////////////////////////////
//
// Filename: zipmmu.v
//
// Project: Zip CPU backend for the GNU Compiler Collection
//
// Purpose: To provide a "bump-in-the-line" wishbone memory management
// unit, that is configured from one wishbone bus and modifies a
// separate wishbone bus. Both busses will not be active at the same time.
//
// The idea is that the CPU can use one portion of its peripheral
// system memory space to configure the MMU, and another portion of its
// memory space to access the MMU. Even more, configuring the MMU is to
// be done when the CPU is in supervisor mode. This means that all
// high-memory, system-peripheral accesses will be enabled *only* when
// the CPU is in supervisor mode.
//
// There is a very specific reason for this design choice: by designing
// the MMU in this fashion, the MMU may then be inluded (or not) at the
// discretion of the individual assembling the ZipSystem (or equivalent)
// module.
//
// Design Goals:
//
// Since we're trying to design this for disadvantaged, limited CPUs,
// we should be able to offer such CPUs only as much MMU as they want.
// Therefore, it should be possible to scale the MMU up and/or down in
// LUT space.
//
// Memory space:
// 1. On access via the memory bus, the MMU should provide for a speed
// going through it such that any access is delayed by only one
// clock cycle. Further, multiple accesses to the same page
// should not take any longer than the one cycle delay. Accesses
// to other pages should take a minimum number of clocks.
// Accesses from one page to the next, such as from one page to
// the next subsequent one, should cost no delays.
//
// 2. One independent control word to set the current context
//
// - When context = 0, virtual page = physical page, page table is an
// unused pass through.
// - When context != 0, MMU translation is active anytime the GIE is
// set. Pages must match context, as well as virtual address.
//
// - Contains 4 RdOnly bits indicating the log address size for the
// machine, offset by 17. Thus, the build will have an address
// bus of width (lgpage+17), or a memory space of (2^(lgpage+17)).
// Under this formula, the number of valid address bits can range
// from 17 to 32.
// - Contains 4 RdOnly bits indicating log_2 TLB table size.
// Size is given by (2^(lgsize)). I'm considering sizes of 6,7&8
// - Contains 4 RdOnly bits indicating the log page size, offset by
// eight. Page sizes are therefore given by (2^(lgpage+8)), and
// the smallest page size is 256 words.
// - Contains 4 RdOnly bits indicating the log context size, offset by 1.
// The number of bits in the context word therefore run from 1 to
// (lgcontext+1)-1, supporting between (2^1)-1=3 and
// (2^16)-1 = 65535 contexts. (The zero context is not being
// counted here, as it is special.)
//
// +------+------+------+------+--------------------+
// | | | | | |
// | 4b | 4b | 4b | 4b | 16-bit |
// | LGADR| LGTBL|LGPGSZ|LGCTXT| Context word |
// | | | | | |
// +------+------+------+------+--------------------+
//
// Supervisor *cannot* have page table entries, since there are no
// interrupts (page faults) allowed in supervisor context.
//
// To be valid,
// Context Size (1..16), NFlags ( 4) < Page Size (8-23 bits)
// Page size (8-23 bits) > NFlags bits (4)
//
// Small page sizes, then, mean fewer contexts are possible
//
// 3. One status word, which contains the address that failed and some
// flags:
//
// Top Virtual address bits indicate which page ... caused a problem.
// These will be the top N bits of the word, where N is the size
// of the virtual address bits. (Bits are cleared upon any write.)
//
// Flags: (Up to 12 bits, all zeros means no fault. Bits are cleared upon
// write)
// - 4: Multiple page table matches
// - 2: Attempt to write a read-only page
// - 1: Page not found
//
// 3. Two words per active page table entry, accessed through two bus
// addresses. This word contains:
//
// 16-bits Page context
// 20-bits Virtual address
// 20-bits Physical address
// A physical address of all ones means that the
// page does not exist, and any attempt to access
// the virtual address associated with this page
// should fault.
//
// Flags:
// 1-bit Read-only / ~written (user set/read/written)
// If set, this page will cause a fault on any
// attempt to write this memory.
// 1-bit Accessed
// This an be used to implement a least-recently
// used measure. The hardware will set this value
// when the page is accessed. The user can also
// set or clear this at will.
// 1-bit Cacheable
// This is not a hardware page, but a memory page.
// Therefore, the values within this page may be
// cached.
// 1-bit This context (Unused ?)
// This is a read-only bit, indicating that the
// context register of this address matches the
// context register in the control word.
//
// (Loaded flag Not necessary, just map the physical page to 0)
//
// We could equivalently do a 16-bit V&P addresses, for a 28-bit total
// address space, if we didn't want to support the entire 32-bit space.
//
//
// 4. Can read/write this word in two parts:
//
// (20-bit Virtual )(8-bits lower context)(4-bit flags), and
// (20-bit Physical)(8-bits upper context)(4-bit flags)
//
// Actual bit lengths will vary as the MMU configuration changes,
// however the flags will always be the low order four bits,
// and the virtual/physical address flags will always consume
// 32 bits minus the page table size. The context bits will
// always be split into upper and lower context bits. If there
// are more context bits than can fit in the space, then the
// upper bits of the context field will be filled with zeros.
//
// On any write, the context bits will be set from the context
// bits in the control register.
//
// +----+----+-----+----+----+----+----+--+--+--+--+
// | | Lower 8b| R| A| C| T|
// | 20-bit Virtual page ID | Context | O| C| C| H|
// |(top 20 bits of the addr)| ID | n| C| H| S|
// | | | W| S| E| P|
// +----+----+-----+----+----+----+----+--+--+--+--+
//
// +----+----+-----+----+----+----+----+--+--+--+--+
// | | Upper 8b| R| A| C| T|
// | 20-bit Physical pg ID | Context | O| C| C| H|
// |(top 20 bits of the | ID | n| C| H| S|
// | physical address | | W| S| E| P|
// +----+----+-----+----+----+----+----+--+--+--+--+
//
// 5. PF Cache--handles words in both physical and virtual
// - On any pf-read, the MMU returns the current pagetable/TBL mapping
// This consists of [Context,Va,Pa].
// - The PF cache stores this with the address tag. (If the PF is reading,
// the VP should match, only the physical page ID needs to be
// sored ...)
// - At the end of any cache line read, the page table/TBL mapping address
// will have long been available, the "Valid" bit will be turned
// on and associated with the physical mapping.
// - On any data-write (pf doesn't write), MMU sends [Context,Va,Pa]
// TLB mapping to the pf-cache.
// - If the write matches any physical PF-cache addresses (???), the
// pfcache declares that address line invalid, and just plain
// clears the valid bit for that page.
//
// Since the cache lines sizes are smaller than the page table sizes,
// failure to match the address means ... what?
//
//
// 6. Normal operation and timing:
// - One clock lost if still on the same page as last time, or in the
// supervisor (physical pages only) context ...
// - Two clocks (1-more delay) if opening a new page.
// (1-clock to look up the entry--comparing against all entries,
// 1-clock to read it, next clock the access goes forward.)
// - No more than two stalls for any access, pipelineable. Thus, once
// you've stalled by both clocks, you'll not stall again during
// any pipeline operation.
//
//
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
////////////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2016-2017, Gisselquist Technology, LLC
//
// This program is free software (firmware): you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or (at
// your option) any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License along
// with this program. (It's in the $(ROOT)/doc directory. Run make with no
// target there if the PDF file isn't present.) If not, see
// <http://www.gnu.org/licenses/> for a copy.
//
// License: GPL, v3, as defined and found on www.gnu.org,
// http://www.gnu.org/licenses/gpl.html
//
//
////////////////////////////////////////////////////////////////////////////////
module zipmmu(i_clk, i_reset, i_wbs_cyc_stb, i_wbs_we, i_wbs_addr,
i_wbs_data, o_wbs_ack, o_wbs_stall, o_wbs_data,
i_wbm_cyc, i_wbm_stb, i_wb_we,
i_wb_addr, i_wb_data, i_wb_sel,
o_cyc, o_stb, o_we, o_addr, o_data, o_sel,
i_stall, i_ack, i_err, i_data,
o_rtn_stall, o_rtn_ack, o_rtn_err,
o_rtn_miss, o_rtn_data,
pf_return_stb, pf_return_we,
pf_return_p, pf_return_v,
pf_return_cachable);
parameter // The size of the address bus. Actual addressable
// size will likely be 2^(ADDRESS_WIDTH+2) octets
ADDRESS_WIDTH=28,
// Number of page table entries
LGTBL=6,
// The requested log page size in bytes
PLGPGSZB=12,
// Number of bits describing context
PLGCTXT=16;
localparam // And for our derived parameters (don't set these ...)
// Width of the data bus is 32-bits. This may be hard
// to change.
DW = 32,
// AW is just shorthand for the name ADDRESS_WIDTH
AW = ADDRESS_WIDTH,
// Page sizes must allow for a minimum of one context
// bit per page, plus four flag bits, hence the minimum
// number of bits for an address within a page is 5
LGPGSZB=(PLGPGSZB < 5)? 5:PLGPGSZB, // in bytes
LGPGSZW=LGPGSZB-2, // in words
// The number of context bits is twice the number of
// bits left over from DW after removing the LGPGSZ
// and flags bits.
LGCTXT=((2*(LGPGSZB-4))>PLGCTXT)?
(2*(LGPGSZB-4)):PLGCTXT,
// LGLCTX is the number of context bits in the low word
LGLCTX=(LGCTXT > (LGPGSZB-4))?(LGPGSZB-4):LGCTXT,
// LGHCTX is the number of context bits in the high word
LGHCTX= (LGCTXT-LGLCTX>0)?(LGCTXT-LGLCTX):0,
VAW=(DW-LGPGSZB), // Virtual address width, in bytes
PAW=(AW-LGPGSZW), // Physical address width, in words
TBL_BITS = LGTBL, // Bits necessary to addr tbl
TBL_SIZE=(1<<TBL_BITS);// Number of table entries
input wire i_clk, i_reset;
//
input wire i_wbs_cyc_stb;
input wire i_wbs_we;
input wire [(LGTBL+1):0] i_wbs_addr;
input wire [(DW-1):0] i_wbs_data;
output reg o_wbs_ack;
output wire o_wbs_stall;
output reg [(DW-1):0] o_wbs_data;
//
input wire i_wbm_cyc, i_wbm_stb;
//
input wire i_wb_we;
input wire [(DW-2-1):0] i_wb_addr;
input wire [(DW-1):0] i_wb_data;
input wire [(DW/8-1):0] i_wb_sel;
//
// Here's where we drive the slave side of the bus
output reg o_cyc;
output wire o_stb, o_we;
output reg [(AW-1):0] o_addr;
output reg [(DW-1):0] o_data;
output reg [(DW/8-1):0] o_sel;
// and get our return information from driving the slave ...
input wire i_stall, i_ack, i_err;
input wire [(DW-1):0] i_data;
//
// Here's where we return information on either our slave/control bus
// or the memory bus we are controlled from. Note that we share these
// wires ...
output wire o_rtn_stall;
output reg o_rtn_ack;
output wire o_rtn_err, o_rtn_miss;
output [(DW-1):0] o_rtn_data;
// Finally, to allow the prefetch to snoop on the MMU conversion ...
output wire pf_return_stb, // snoop data is valid
pf_return_we; // snoop data is chnging
output wire [(PAW-1):0] pf_return_p;
output wire [(VAW-1):0] pf_return_v;
output wire pf_return_cachable;
//
//
//
//
//
reg [3:1] tlb_flags [0:(TBL_SIZE-1)];
reg [(LGCTXT-1):0] tlb_cdata [0:(TBL_SIZE-1)];
reg [(VAW-1):0] tlb_vdata [0:(TBL_SIZE-1)];
reg [(PAW-1):0] tlb_pdata [0:(TBL_SIZE-1)];
wire adr_control, adr_vtable, adr_ptable;
wire wr_control, wr_vtable, wr_ptable;
wire [(LGTBL-1):0] wr_tlb_addr;
assign wr_tlb_addr= i_wbs_addr[(LGTBL):1]; // Leave bottom for V/P
assign adr_control= (i_wbs_cyc_stb)&&(~i_wbs_addr[(LGTBL+1)])&&(~i_wbs_addr[0]);
assign adr_vtable = (i_wbs_cyc_stb)&&( i_wbs_addr[(LGTBL+1)])&&(~i_wbs_addr[0]);
assign adr_ptable = (i_wbs_cyc_stb)&&( i_wbs_addr[(LGTBL+1)])&&( i_wbs_addr[0]);
assign wr_control = (adr_control)&&(i_wbs_we);
assign wr_vtable = (adr_vtable )&&(i_wbs_we);
assign wr_ptable = (adr_ptable )&&(i_wbs_we);
reg z_context, setup_this_page_flag;
reg [(LGCTXT-1):0] r_context_word, setup_page;
//
wire [31:0] w_control_data,w_vtable_reg,w_ptable_reg;
wire [(LGCTXT-1):0] w_ctable_reg;
reg [31:0] status_word;
//
//
reg r_pending, r_we, last_page_valid, last_ro, r_valid;
reg [(DW-3):0] r_addr;
reg [(DW-1):0] r_data;
reg [(DW/8-1):0] r_sel;
reg [(PAW-1):0] last_ppage;
reg [(VAW-1):0] last_vpage;
//
wire [(TBL_SIZE-1):0] r_tlb_match;
reg [(LGTBL-1):0] s_tlb_addr;
reg s_tlb_miss, s_tlb_hit, s_pending;
//
wire ro_flag, simple_miss, ro_miss, table_err, cachable;
reg p_tlb_miss,p_tlb_err, pf_stb, pf_cachable;
//
reg rtn_err;
//////////////////////////////////////////
//
//
// Step one -- handle the control bus--i_wbs_cyc_stb
//
//
//////////////////////////////////////////
always @(posedge i_clk)
begin
// Write to the Translation lookaside buffer
if (wr_vtable)
tlb_vdata[wr_tlb_addr]<=i_wbs_data[(DW-1):LGPGSZB];
if (wr_ptable)
tlb_pdata[wr_tlb_addr]<=i_wbs_data[(AW+1):LGPGSZB];
// Set the context register for the page
if ((wr_vtable)||(wr_ptable))
tlb_flags[wr_tlb_addr] <= i_wbs_data[3:1];
// Otherwise, keep track of the accessed bit if we ever access this page
else if ((!z_context)&&(r_pending)&&(s_tlb_hit)&&((!r_we)||(!ro_flag)))
tlb_flags[s_tlb_addr][2] <= 1'b1;
if (wr_vtable)
tlb_cdata[wr_tlb_addr][((LGCTXT>=8)? 7:(LGCTXT-1)):0]
<= i_wb_data[((LGCTXT>=8)? 11:(4+LGCTXT-1)):4];
if ((wr_ptable)&&(LGCTXT > 8))
tlb_cdata[wr_tlb_addr][(LGCTXT-1):8]
<= i_wb_data[(4+LGCTXT-8-1):4];
end
// Writing to the control word
initial z_context = 1'b1;
initial r_context_word = 0;
always @(posedge i_clk)
if (wr_control)
begin
r_context_word <= i_wbs_data[(LGCTXT-1):0];
z_context <= (i_wbs_data[(LGCTXT-1):0] == {(LGCTXT){1'b0}});
end
// Status words cannot be written to
/* verilator lint_off WIDTH */
assign w_control_data[31:28] = AW-17;
assign w_control_data[27:24] = LGTBL;
assign w_control_data[23:20] = LGPGSZB-10;
assign w_control_data[19:16] = LGCTXT-1;
/* verilator lint_on WIDTH */
assign w_control_data[15: 0] = {{(16-LGCTXT){1'b0}}, r_context_word};
//
assign w_vtable_reg[(DW-1):LGPGSZB] = tlb_vdata[wr_tlb_addr];
assign w_vtable_reg[(LGLCTX+4-1):4] = { tlb_cdata[wr_tlb_addr][(LGLCTX-1):0] };
assign w_vtable_reg[ 3:0] = { tlb_flags[wr_tlb_addr], 1'b0 };
//
assign w_ptable_reg[(DW-1):LGPGSZB] = { {(DW-PAW-LGPGSZB){1'b0}},
tlb_pdata[wr_tlb_addr] };
assign w_ptable_reg[ 3:0] = { tlb_flags[wr_tlb_addr], 1'b0 };
assign w_ctable_reg = tlb_cdata[wr_tlb_addr];
//
generate
if (4+LGHCTX-1>4)
assign w_ptable_reg[(4+LGHCTX-1):4] = {
tlb_cdata[wr_tlb_addr][(LGCTXT-1):LGLCTX] };
if (LGPGSZB > LGLCTX+4)
assign w_vtable_reg[(LGPGSZB-1):(LGLCTX+4)] = 0;
if (LGPGSZB > LGHCTX+4)
assign w_ptable_reg[(LGPGSZB-1):(LGHCTX+4)] = 0;
endgenerate
// Now, reading from the bus
always @(posedge i_clk)
setup_page <= w_ctable_reg;
always @(posedge i_clk)
setup_this_page_flag <= (i_wbs_cyc_stb)&&(i_wbs_addr[LGTBL+1]);
//////////////////////////////////////////
//
//
// Step two -- handle the page lookup on the master bus
//
//
//////////////////////////////////////////
//
//
// First clock, and the r_ register, copies the bus data from the bus.
// While this increases the bus latency, it also gives us a moment to
// work.
//
//
initial r_pending = 1'b0;
initial r_valid = 1'b0;
always @(posedge i_clk)
begin
if (!o_rtn_stall)
begin
r_pending <= i_wbm_stb;
r_we <= i_wb_we;
r_addr <= i_wb_addr;
r_data <= i_wb_data;
r_sel <= i_wb_sel;
r_valid <= (i_wbm_stb)&&((z_context)||((last_page_valid)
&&(i_wb_addr[(DW-3):(DW-2-VAW)] == last_vpage)
&&((!last_ro)||(!i_wb_we))));
s_pending <= 1'b0;
end else begin
r_valid <= (r_valid)||((last_page_valid)
&&(r_addr[(DW-3):(DW-2-VAW)]== last_vpage)
&&((!last_ro)||(!r_we)));
r_pending<= (r_pending)&&(i_wbm_cyc);
s_pending <= r_pending;
end
if (i_reset)
r_pending <= 1'b0;
end
// Second clock: know which buffer entry this belong in.
// If we don't already know, then the pipeline must be stalled for a
// while ...
genvar k, s;
generate
for(k=0; k<TBL_SIZE; k = k + 1)
assign r_tlb_match[k] =
// Virtual address must match
((tlb_vdata[k] == r_addr[(DW-3):(DW-2-VAW)])
// Context must match as well
&&(tlb_cdata[k] == r_context_word));
endgenerate
initial s_tlb_miss = 1'b0;
initial s_tlb_hit = 1'b0;
generate
always @(posedge i_clk)
begin // valid when s_ becomes valid
s_tlb_addr <= {(LGTBL){1'b0}};
/*
for(k=0; k<TBL_SIZE; k=k+1)
for(s=0; s<LGTBL; s=s+1)
if (((k&(1<<s))!=0)&&(r_tlb_match[k]))
s_tlb_addr[s] <= 1'b1;
*/
for(k=0; k<TBL_SIZE; k=k+1)
if (r_tlb_match[k])
s_tlb_addr <= k[(LGTBL-1):0];
s_tlb_miss <= (r_pending)&&(r_tlb_match[(TBL_BITS-1):0] == 0);
s_tlb_hit <= 1'b0;
for(k=0; k<TBL_SIZE; k=k+1)
if (r_tlb_match == (1<<k))
s_tlb_hit <= (r_pending);
end endgenerate
// Third clock: Read from the address the virtual table offset,
// whether read-only, etc.
assign ro_flag = tlb_flags[s_tlb_addr][3];
assign simple_miss = (s_pending)&&(s_tlb_miss);
assign ro_miss = (s_pending)&&(s_tlb_hit)&&(r_we)&&(ro_flag);
assign table_err = (s_pending)&&(!s_tlb_miss)&&(!s_tlb_hit);
assign cachable = tlb_flags[s_tlb_addr][1];
// assign tlb_access_flag = tlb_flags[s_tlb_addr][2];
initial pf_stb = 1'b0;
initial p_tlb_err = 1'b0;
initial p_tlb_miss = 1'b0;
always @(posedge i_clk)
begin
p_tlb_miss <= (simple_miss)||(ro_miss);
p_tlb_err <= (s_pending)&&((!s_tlb_miss)&&(!s_tlb_hit));
pf_cachable <= cachable;
if ((!z_context)&&(r_pending))
begin
last_ppage <= tlb_pdata[s_tlb_addr];
last_vpage <= tlb_vdata[s_tlb_addr];
last_ro <= ro_flag;
pf_stb <= 1'b1;
end else
pf_stb <= 1'b0;
if ((table_err)||(ro_miss)||(simple_miss))
status_word <= { r_addr[(AW-1):(AW-VAW)],
{(LGPGSZW-1){1'b0}},
(table_err), (ro_miss), (simple_miss) };
if (wr_control)
last_page_valid <= (last_page_valid)
&&(r_context_word == i_wb_data[(LGCTXT-1):0]);
else if ((r_pending)&&(!z_context))
last_page_valid <= (s_tlb_hit)&&(!ro_miss);
if (i_reset)
last_page_valid <= 1'b0;
end
initial rtn_err = 1'b0;
always @(posedge i_clk)
begin
o_cyc <= (!i_reset)&&(i_wbm_cyc);
o_rtn_ack <= (!i_reset)&&(i_wbm_cyc)&&(i_ack);
o_rtn_data <= i_data;
if (setup_this_page_flag)
o_rtn_data[0] <= ((setup_page == r_context_word)? 1'b1:1'b0);
rtn_err <= (!i_reset)&&(i_wbm_cyc)&&(i_err);
end
assign o_stb = (r_valid);
assign o_we = (r_we);
assign o_rtn_stall = (i_wbm_cyc)&&(((r_pending)&&(!r_valid))||(i_stall));
assign o_rtn_miss = p_tlb_miss;
assign o_rtn_err = (rtn_err)||(p_tlb_err);
assign o_addr[(AW-1):0] = { { (z_context)?
r_addr[(AW-1):LGPGSZW] : last_ppage },
r_addr[(LGPGSZW-1):0]};
assign o_sel = r_sel;
assign o_data = r_data;
//
assign o_wbs_stall = 1'b0;
always @(posedge i_clk)
o_wbs_ack <= (i_wbs_cyc_stb)&&(!i_reset);
always @(posedge i_clk)
case({i_wb_addr[LGTBL+1],i_wb_addr[0]})
2'b00: o_wbs_data <= w_control_data;
2'b01: o_wbs_data <= status_word;
2'b10: o_wbs_data <= w_vtable_reg;
2'b11: o_wbs_data <= w_ptable_reg;
endcase
//
// Bus snooping returns ...
//
assign pf_return_stb = pf_stb;
assign pf_return_we = r_we;
assign pf_return_p = last_ppage;
assign pf_return_v = last_vpage;
assign pf_return_cachable = pf_cachable;
endmodule